Variational Auto-encoder(VAE)变分自编码器-Pytorch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image # 配置GPU或CPU设置 device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) # 创建目录 # Create a directory if not exists sample_dir = 'samples' if not os.path.exists(sample_dir): os.makedirs(sample_dir) # 超参数设置 # Hyper-parameters image_size = 784 h_dim = 400 z_dim = 20 num_epochs = 15 batch_size = 128 learning_rate = 1e - 3 # 获取数据集 # MNIST dataset dataset = torchvision.datasets.MNIST(root = './data' , train = True , transform = transforms.ToTensor(), download = True ) # 数据加载,按照batch_size大小加载,并随机打乱 data_loader = torch.utils.data.DataLoader(dataset = dataset, batch_size = batch_size, shuffle = True ) # 定义VAE类 # VAE model class VAE(nn.Module): def __init__( self , image_size = 784 , h_dim = 400 , z_dim = 20 ): super (VAE, self ).__init__() self .fc1 = nn.Linear(image_size, h_dim) self .fc2 = nn.Linear(h_dim, z_dim) self .fc3 = nn.Linear(h_dim, z_dim) self .fc4 = nn.Linear(z_dim, h_dim) self .fc5 = nn.Linear(h_dim, image_size) # 编码 学习高斯分布均值与方差 def encode( self , x): h = F.relu( self .fc1(x)) return self .fc2(h), self .fc3(h) # 将高斯分布均值与方差参数重表示,生成隐变量z 若x~N(mu, var*var)分布,则(x-mu)/var=z~N(0, 1)分布 def reparameterize( self , mu, log_var): std = torch.exp(log_var / 2 ) eps = torch.randn_like(std) return mu + eps * std # 解码隐变量z def decode( self , z): h = F.relu( self .fc4(z)) return F.sigmoid( self .fc5(h)) # 计算重构值和隐变量z的分布参数 def forward( self , x): mu, log_var = self .encode(x) # 从原始样本x中学习隐变量z的分布,即学习服从高斯分布均值与方差 z = self .reparameterize(mu, log_var) # 将高斯分布均值与方差参数重表示,生成隐变量z x_reconst = self .decode(z) # 解码隐变量z,生成重构x’ return x_reconst, mu, log_var # 返回重构值和隐变量的分布参数 # 构造VAE实例对象 model = VAE().to(device) print (model) # VAE( (fc1): Linear(in_features=784, out_features=400, bias=True) # (fc2): Linear(in_features=400, out_features=20, bias=True) # (fc3): Linear(in_features=400, out_features=20, bias=True) # (fc4): Linear(in_features=20, out_features=400, bias=True) # (fc5): Linear(in_features=400, out_features=784, bias=True)) # 选择优化器,并传入VAE模型参数和学习率 optimizer = torch.optim.Adam(model.parameters(), lr = learning_rate) #开始训练 for epoch in range (num_epochs): for i, (x, _) in enumerate (data_loader): # 前向传播 x = x.to(device).view( - 1 , image_size) # 将batch_size*1*28*28 ---->batch_size*image_size 其中,image_size=1*28*28=784 x_reconst, mu, log_var = model(x) # 将batch_size*748的x输入模型进行前向传播计算,重构值和服从高斯分布的隐变量z的分布参数(均值和方差) # 计算重构损失和KL散度 # Compute reconstruction loss and kl divergence # For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43 # 重构损失 reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average = False ) # KL散度 kl_div = - 0.5 * torch. sum ( 1 + log_var - mu. pow ( 2 ) - log_var.exp()) # 反向传播与优化 # 计算误差(重构误差和KL散度值) loss = reconst_loss + kl_div # 清空上一步的残余更新参数值 optimizer.zero_grad() # 误差反向传播, 计算参数更新值 loss.backward() # 将参数更新值施加到VAE model的parameters上 optimizer.step() # 每迭代一定步骤,打印结果值 if (i + 1 ) % 10 = = 0 : print ( "Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}" . format (epoch + 1 , num_epochs, i + 1 , len (data_loader), reconst_loss.item(), kl_div.item())) with torch.no_grad(): # Save the sampled images # 保存采样值 # 生成随机数 z z = torch.randn(batch_size, z_dim).to(device) # z的大小为batch_size * z_dim = 128*20 # 对随机数 z 进行解码decode输出 out = model.decode(z).view( - 1 , 1 , 28 , 28 ) # 保存结果值 save_image(out, os.path.join(sample_dir, 'sampled-{}.png' . format (epoch + 1 ))) # Save the reconstructed images # 保存重构值 # 将batch_size*748的x输入模型进行前向传播计算,获取重构值out out, _, _ = model(x) # 将输入与输出拼接在一起输出保存 batch_size*1*28*(28+28)=batch_size*1*28*56 x_concat = torch.cat([x.view( - 1 , 1 , 28 , 28 ), out.view( - 1 , 1 , 28 , 28 )], dim = 3 ) save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png' . format (epoch + 1 ))) |
大概长这么个样子:
附上一张结果图:
个人学习记录
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步