线性判别分析(Linear Discriminant Analysis)(二)

4. 实例

      将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。

      clip_image002

      PCA与LDA的降维对比:

      clip_image004

      PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向。

      LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别?

      拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类。而怎么寻找这个y0呢?

      看

      clip_image006

      根据中心极限定理,独立同分布的随机变量和符合高斯分布,然后利用极大似然估计求

      clip_image008

      然后用决策理论里的公式来寻找最佳的y0,详情请参阅PRML。

      这是一种可行但比较繁琐的选取方法,可以看第7节(一些问题)来得到简单的答案。

5. 使用LDA的一些限制

      1、 LDA至多可生成C-1维子空间

      LDA降维后的维度区间在[1,C-1],与原始特征数n无关,对于二值分类,最多投影到1维。

      2、 LDA不适合对非高斯分布样本进行降维。

      clip_image010

      上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。

      3、 LDA在样本分类信息依赖方差而不是均值时,效果不好。

      clip_image011

      上图中,样本点依靠方差信息进行分类,而不是均值信息。LDA不能够进行有效分类,因为LDA过度依靠均值信息。

      4、 LDA可能过度拟合数据。

6. LDA的一些变种

1、 非参数LDA

      非参数LDA使用本地信息和K临近样本点来计算clip_image013,使得clip_image013[1]是全秩的,这样我们可以抽取多余C-1个特征向量。而且投影后分离效果更好。

2、 正交LDA

      先找到最佳的特征向量,然后找与这个特征向量正交且最大化fisher条件的向量。这种方法也能摆脱C-1的限制。

3、 一般化LDA

      引入了贝叶斯风险等理论

4、 核函数LDA

      将特征clip_image015,使用核函数来计算。

7. 一些问题

      上面在多值分类中使用的

      clip_image017

      是带权重的各类样本中心到全样本中心的散列矩阵。如果C=2(也就是二值分类时)套用这个公式,不能够得出在二值分类中使用的clip_image013[2]

      clip_image019

      因此二值分类和多值分类时求得的clip_image013[3]会不同,而clip_image021意义是一致的。

      对于二值分类问题,令人惊奇的是最小二乘法和Fisher线性判别分析是一致的。

      下面我们证明这个结论,并且给出第4节提出的y0值得选取问题。

      回顾之前的线性回归,给定N个d维特征的训练样例clip_image023(i从1到N),每个clip_image025对应一个类标签clip_image027。我们之前令y=0表示一类,y=1表示另一类,现在我们为了证明最小二乘法和LDA的关系,我们需要做一些改变

      clip_image029

      就是将0/1做了值替换。

      我们列出最小二乘法公式

      clip_image031

      w和clip_image033是拟合权重参数。

      分别对clip_image033[1]和w求导得

      clip_image035

      clip_image037

      从第一个式子展开可以得到

      clip_image039

      消元后,得

      clip_image041

      clip_image043

      可以证明第二个式子展开后和下面的公式等价

      clip_image045

      其中clip_image047clip_image049与二值分类中的公式一样。

      由于clip_image051

      因此,最后结果仍然是

      clip_image053

      这个过程从几何意义上去理解也就是变形后的线性回归(将类标签重新定义),线性回归后的直线方向就是二值分类中LDA求得的直线方向w。

      好了,我们从改变后的y的定义可以看出y>0属于类clip_image055,y<0属于类clip_image057。因此我们可以选取y0=0,即如果clip_image059,就是类clip_image055[1],否则是类clip_image057[1]

      写了好多,挺杂的,还有个topic模型也叫做LDA,不过名字叫做Latent Dirichlet Allocation,第二作者就是Andrew Ng大牛,最后一个他导师Jordan泰斗了,什么时候拜读后再写篇总结发上来吧。

posted on 2011-04-21 23:31  JerryLead  阅读(37797)  评论(1编辑  收藏  举报

导航