tensorboard的使用

 1 # -*- coding: utf-8 -*-
 2 """
 3 Created on: 2017/10/29
 4 @author   : Shawn
 5 function  :
 6 """
 7 import tensorflow as tf
 8 from tensorflow.examples.tutorials.mnist import input_data
 9 
10 # 入口函数
11 if __name__ == '__main__':
12 
13     # 载入数据
14     mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
15 
16     # 每个批次的大小
17     batch_size= 100
18 
19     # 计算一共有多少个批次
20     n_batch= mnist.train.num_examples // batch_size
21 
22     # 命名空间
23     with tf.name_scope('input'):
24         # 定义两个placeholder
25         x = tf.placeholder(tf.float32, [None, 784], name='x-input')  # 输入层784个神经元
26         y = tf.placeholder(tf.float32, [None, 10], name='y-input')  # 输出层10个神经元,10类
27 
28     W = tf.Variable(tf.zeros([784, 10]))
29     b = tf.Variable(tf.zeros([10]))
30     prediction = tf.nn.softmax(tf.matmul(x, W)+b)
31 
32     # 二次代价函数
33     # loss = tf.reduce_mean(tf.square(y-prediction))
34     loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
35 
36     # 使用梯度下降法
37     # train_step= tf.train.GradientDescentOptimizer(0.2).minimize(loss) # 0.2为学习率
38     train_step = tf.train.AdamOptimizer(1e-1).minimize(loss)
39 
40     # 初始化变量
41     init = tf.global_variables_initializer()
42 
43     # 结果存在一个bool类型的列表中
44     correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(prediction, 1)) # agmax返回一维张量中最大值所在的位置
45 
46     # 求准确率
47     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
48 
49     with tf.Session() as sess:
50         sess.run(init)
51         writer = tf.summary.FileWriter('logs/', sess.graph)
52 
53         # 把所有图片训练21次
54         for epoch in range(1):
55 
56             # 训练n_batch批次
57             for batch in range(n_batch):
58                 batch_xs, batch_ys = mnist.train.next_batch(batch_size)
59                 sess.run(train_step, feed_dict={x:batch_xs, y:batch_ys})
60 
61             acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
62             print ("Iter " + str(epoch)+", Testing Accuracy" + str(acc))
63 
64     pass
代码

进入cmd:

tensorboard --logdir=F:\PycharmProjects\TFlearn\src\logs

输出一个网址:

用google浏览器或者火狐打开

 

posted @ 2017-10-30 21:13  Wenism  阅读(633)  评论(0编辑  收藏  举报