POJ 1759 Garland
高度之间的关系可以改写成一个递推式:Hi+1 = 2Hi - Hi-1 + 2。Hn和Hi之间是正相关的。
思路见注释。(一开始是那么想的,其实不用矩阵快速幂,二分H2也可以。
/********************************************************* * ------------------ * * author AbyssalFish * **********************************************************/ #include<cstdio> #include<iostream> #include<string> #include<cstring> #include<queue> #include<vector> #include<stack> #include<vector> #include<map> #include<set> #include<algorithm> #include<cmath> #include<numeric> using namespace std; /* Hi = (Hi-1+Hi+1) /2 - 1 Hi+1 = 2Hi - Hi-1 + 2 构造 matrix Hi+1 |2 -1 2 | Hi Hi =|1 0 0 | Hi-1 1 |0 0 0 | 1 Hn一定是H1和H2的线性组合 矩阵快速幂以后,根据Hn求出H2 然后就可递推了 */ #define check_mat(M)\ for(auto r: M){\ for(auto e: r) cout<<e<<' ';\ cout<<endl;\ } typedef vector<int> row; typedef vector<row> mat; const int n = 3; mat operator *(mat&A, mat &B) { mat R(n,row(n)); for(int i = 0; i < n; i++){ for(int j = 0; j < n; j++){ for(int k = 0; k < n; k++){ R[i][j] += A[i][k]*B[k][j]; } } } return R; } mat operator ^(mat A, int q) { mat R(n,row(n)); for(int i = 0; i < n; i++) R[i][i] = 1; while(q){ if(q&1) { R = R*A; } A = A*A; q >>= 1; } return R; } const int MAX_N = 1e3; int N; double A; double H[MAX_N]; mat M(n,row(n)); #define check_var(v) cout<<v<<endl; bool P(double Hn) { H[1] = (Hn - M[0][1]*H[0] - M[0][2])/M[0][0]; if(H[1] < 0.) return false; for(int i = 2; i < N-1; i++){ H[i] = 2*H[i-1] - H[i-2] + 2; if(H[i] < 0.) { //check_var(H[i]) return false; } } return true; } //#define LOCAL int main() { #ifdef LOCAL freopen("in.txt","r",stdin); #endif M[0][0] = 2; M[0][1] = -1; M[0][2] = 2; M[1][0] = 1; M[2][2] = 1; scanf("%d%lf", &N, H); M = M^(N-2); //check_mat(M) double lb = 0, ub = 1e9, md; for(int i = 100; i--;){ md = (lb+ub)/2; P(md) ? ub = md: lb = md; } printf("%.2f",(lb+ub)/2); return 0; }