UVA 177 PaperFolding 折纸痕 (分形,递归)
著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折……每次对折都是从右往左折,因此在折了很多次以后,原先的大纸会变成一个窄窄的纸条。现在把这个纸条沿着折纸的痕迹打开,每次都只打开“一半”,即把每个痕迹做成一个直角,那么从纸的一端沿着和纸面平行的方向看过去,会看到一条美妙的曲线。
就是一个分形,规定一下,纸的朝向,然后不难发现规律。
实现方面,可以迭代也可递归。
在图形输出方面,存下x和y坐标,然后下标排个序,或者用map。
//Rey 2015.8.3 #include<bits/stdc++.h> using namespace std; // r -> rl -> open -> ru // -> rlrl -> open -> r ud l -> open -> ru lu // -> rlrlrlrl -> open -> r ud lr ud l -> open -> ru ludr dl -> rulu ldlu // -> rlrlrlrlrlrlrlrl -> r ud lr ud lr ud lr ud l -> ru const int maxn = 14; const int maxL = (1<<13)+5; int dir[maxL]; int Rotate[maxL]; int r[maxL]; int x[maxL],y[maxL]; // up right down left // 0 1 2 3 int dx[] = {-1,0,0, 0}; int dy[] = { 0,1,0,-1}; int mx[] = { 0,0,1, 0}; int my[] = { 0,1,0,-1}; char decode[] = {'|','_','|','_'}; bool cmp(int a,int b) { return x[a] < x[b] || ( x[a] == x[b] && y[a] < y[b] ); } void solve(int n) { int N = (1<<n); // fold for(int i = 0, tmp[2] = {1,3}; i < N; i++) dir[i] = tmp[i&1]; memset(Rotate,0,sizeof(int)*N); //open //mark for(int i = 1 ; i <= n; i++) { int seg = 1<<i; for(int j = 1<<(i-1); j < N; j += seg<<1){ for(int k = 0; k < seg && j+k < N; k++) Rotate[j+k]++; } } //rotate and calculate position int minx = 0,miny = 0; x[0] = y[0] = 0; for(int i = 1; i < N; i++){ int &u = dir[i] , u2 = dir[i-1]; u = (u + Rotate[i])%4; x[i] = x[i-1] + dx[u2] + mx[u] ; y[i] = y[i-1] + dy[u2] + my[u] ; minx = min(minx,x[i]); miny = min(miny,y[i]); } //normalize for(int i = 0; i < N; i++){ x[i] -= minx; y[i] -= miny; } for(int i = 0; i < N; i++) r[i] = i; sort(r,r+N,cmp); int prex = 0,prey = -1; for(int i = 0; i < N; i++){ int id = r[i]; if(x[id] != prex) putchar('\n'),prey = -1; for(int j = prey+1; j < y[id]; j++) putwchar(' '); putchar(decode[dir[id]]); prey = y[id]; prex = x[id]; } printf("\n^\n"); } int main() { // freopen("out.txt","w",stdout); int n; while(scanf("%d",&n),n){ solve(n); } return 0; }