1 //我们假设客户端的代码如下(为代码直观,省去所有错误检查,以下同): 2 #include <WINSOCK2.H> 3 #include <stdio.h> 4 #define SERVER_ADDRESS "137.117.2.148" 5 #define PORT 5150 6 #define MSGSIZE 1024 7 #pragma comment(lib, "ws2_32.lib") 8 int main() 9 { 10 WSADATA wsaData; 11 SOCKET sClient; 12 SOCKADDR_IN server; 13 char szMessage[MSGSIZE]; 14 int ret; 15 16 // Initialize Windows socket library 17 WSAStartup(0x0202, &wsaData); 18 // Create client socket 19 sClient = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 20 // Connect to server 21 memset(&server, 0, sizeof(SOCKADDR_IN)); 22 server.sin_family = AF_INET; 23 server.sin_addr.S_un.S_addr = inet_addr(SERVER_ADDRESS); 24 server.sin_port = htons(PORT); 25 connect(sClient, (struct sockaddr *)&server, sizeof(SOCKADDR_IN)); 26 while (TRUE) 27 { 28 printf("Send:"); 29 gets(szMessage); 30 // Send message 31 send(sClient, szMessage, strlen(szMessage), 0); 32 // Receive message 33 ret = recv(sClient, szMessage, MSGSIZE, 0); 34 szMessage[ret] = '\0'; 35 printf("Received [%d bytes]: '%s'\n", ret, szMessage); 36 } 37 // Clean up 38 closesocket(sClient); 39 WSACleanup(); 40 return 0; 41 } 42 /*客户端所做的事情相当简单,创建套接字,连接服务器,然后不停的发送和接收数据。比较容易想到的一种服务器模型就是采用一个主线程,负责监听客户端的连接请求,当接收到某个客户端的连接请求后,创建一个专门用于和该客户端通信的套接字和一个辅助线程。以后该客户端和服务器的交互都在这个辅助线程内完成。这种方法比较直观,程序非常简单而且可移植性好,但是不能利用平台相关的特性。例如,如果连接数增多的时候(成千上万的连接),那么线程数成倍增长,操作系统忙于频繁的线程间切换,而且大部分线程在其生命周期内都是处于非活动状态的,这大大浪费了系统的资源。所以,如果你已经知道你的代码只会运行在Windows平台上,建议采用Winsock I/O模型。 43 一.选择模型 44 Select(选择)模型是Winsock中最常见的I/O模型。之所以称其为“Select模型”,是由于它的“中心思想”便是利用select函数,实现对I/O的管理。最初设计该模型时,主要面向的是某些使用UNIX操作系统的计算机,它们采用的是Berkeley套接字方案。Select模型已集成到Winsock 1.1中,它使那些想避免在套接字调用过程中被无辜“锁定”的应用程序,采取一种有序的方式,同时进行对多个套接字的管理。由于Winsock 1.1向后兼容于Berkeley套接字实施方案,所以假如有一个Berkeley套接字应用使用了select函数,那么从理论角度讲,毋需对其进行任何修改,便可正常运行。 45 下面的这段程序就是利用选择模型实现的Echo服务器的代码(已经不能再精简了): 46 */ 47 #include <winsock.h> 48 #include <stdio.h> 49 #define PORT 5150 50 #define MSGSIZE 1024 51 #pragma comment(lib, "ws2_32.lib") 52 int g_iTotalConn = 0; 53 SOCKET g_CliSocketArr[FD_SETSIZE]; 54 DWORD WINAPI WorkerThread(LPVOID lpParameter); 55 int main() 56 { 57 WSADATA wsaData; 58 SOCKET sListen, sClient; 59 SOCKADDR_IN local, client; 60 int iaddrSize = sizeof(SOCKADDR_IN); 61 DWORD dwThreadId; 62 // Initialize Windows socket library 63 WSAStartup(0x0202, &wsaData); 64 // Create listening socket 65 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 66 // Bind 67 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 68 local.sin_family = AF_INET; 69 local.sin_port = htons(PORT); 70 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN)); 71 // Listen 72 listen(sListen, 3); 73 // Create worker thread 74 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId); 75 while (TRUE) 76 { 77 // Accept a connection 78 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize); 79 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port)); 80 // Add socket to g_CliSocketArr 81 g_CliSocketArr[g_iTotalConn++] = sClient; 82 } 83 84 return 0; 85 } 86 DWORD WINAPI WorkerThread(LPVOID lpParam) 87 { 88 int i; 89 fd_set fdread; 90 int ret; 91 struct timeval tv = {1, 0}; 92 char szMessage[MSGSIZE]; 93 94 while (TRUE) 95 { 96 FD_ZERO(&fdread); 97 for (i = 0; i < g_iTotalConn; i++) 98 { 99 FD_SET(g_CliSocketArr, &fdread); 100 } 101 // We only care read event 102 ret = select(0, &fdread, NULL, NULL, &tv); 103 if (ret == 0) 104 { 105 // Time expired 106 continue; 107 } 108 for (i = 0; i < g_iTotalConn; i++) 109 { 110 if (FD_ISSET(g_CliSocketArr, &fdread)) 111 { 112 // A read event happened on g_CliSocketArr 113 ret = recv(g_CliSocketArr, szMessage, MSGSIZE, 0); 114 if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET)) 115 { 116 // Client socket closed 117 printf("Client socket %d closed.\n", g_CliSocketArr); 118 closesocket(g_CliSocketArr); 119 if (i < g_iTotalConn - 1) 120 { 121 g_CliSocketArr[i--] = g_CliSocketArr[--g_iTotalConn]; 122 } 123 } 124 else 125 { 126 // We received a message from client 127 szMessage[ret] = '\0'; 128 send(g_CliSocketArr, szMessage, strlen(szMessage), 0); 129 } 130 } 131 } 132 } 133 return 0; 134 } 135 /*服务器的几个主要动作如下: 136 1.创建监听套接字,绑定,监听; 137 2.创建工作者线程; 138 3.创建一个套接字数组,用来存放当前所有活动的客户端套接字,每accept一个连接就更新一次数组; 139 4.接受客户端的连接。这里有一点需要注意的,就是我没有重新定义FD_SETSIZE宏,所以服务器最多支持的并发连接数为64。而且,这里决不能无条件的accept,服务器应该根据当前的连接数来决定是否接受来自某个客户端的连接。一种比较好的实现方案就是采用WSAAccept函数,而且让WSAAccept回调自己 140 实现的Condition Function。如下所示: 141 */ 142 int CALLBACK ConditionFunc(LPWSABUF lpCallerId,LPWSABUF lpCallerData, 143 LPQOS lpSQOS,LPQOS lpGQOS,LPWSABUF lpCalleeId, LPWSABUF lpCalleeData,GROUP FAR * g,DWORD dwCallbackData) 144 { 145 if (当前连接数 < FD_SETSIZE) 146 return CF_ACCEPT; 147 else 148 return CF_REJECT; 149 } 150 /*工作者线程里面是一个死循环,一次循环完成的动作是: 151 1.将当前所有的客户端套接字加入到读集fdread中; 152 2.调用select函数; 153 3.查看某个套接字是否仍然处于读集中,如果是,则接收数据。如果接收的数据长度为0,或者发生WSAECONNRESET错误,则表示客户端套接字主动关闭,这时需要将服务器中对应的套接字所绑定的资源释放掉,然后调整我们的套接字数组(将数组中最后一个套接字挪到当前的位置上)除了需要有条件接受客户端的连接外,还需要在连接数为0的情形下做特殊处理,因为如果读集中没有任何套接字,select函数会立刻返回,这将导致工作者线程成为一个毫无停顿的死循环,CPU的占用率马上达到100%。 154 二.异步选择 155 Winsock提供了一个有用的异步I/O模型。利用这个模型,应用程序可在一个套接字上,接收以Windows消息为基础的网络事件通知。具体的做法是在建好一个套接字后,调用WSAAsyncSelect函数。该模型最早出现于Winsock的1.1版本中,用于帮助应用程序开发者面向一些早期的16位Windows平台(如Windows for Workgroups),适应其“落后”的多任务消息环境。应用程序仍可从这种模型中得到好处,特别是它们用一个标准的Windows例程(常称为"WndProc"),对窗口消息进行管理的时候。该模型亦得到了Microsoft Foundation Class(微软基本类,MFC)对象CSocket的采纳。 156 我还是先贴出代码,然后做详细解释: 157 */ 158 #include <winsock.h> 159 #include <tchar.h> 160 #define PORT 5150 161 #define MSGSIZE 1024 162 #define WM_SOCKET WM_USER+0 163 #pragma comment(lib, "ws2_32.lib") 164 LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); 165 int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, PSTR szCmdLine, int iCmdShow) 166 { 167 static TCHAR szAppName[] = _T("AsyncSelect Model"); 168 HWND hwnd ; 169 MSG msg ; 170 WNDCLASS wndclass ; 171 wndclass.style = CS_HREDRAW | CS_VREDRAW ; 172 wndclass.lpfnWndProc = WndProc ; 173 wndclass.cbClsExtra = 0 ; 174 wndclass.cbWndExtra = 0 ; 175 wndclass.hInstance = hInstance ; 176 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ; 177 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ; 178 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ; 179 wndclass.lpszMenuName = NULL ; 180 wndclass.lpszClassName = szAppName ; 181 if (!RegisterClass(&wndclass)) 182 { 183 MessageBox (NULL, TEXT ("This program requires Windows NT!"), szAppName, MB_ICONERROR) ; 184 return 0 ; 185 } 186 hwnd = CreateWindow (szAppName, // window class name 187 TEXT ("AsyncSelect Model"), // window caption 188 WS_OVERLAPPEDWINDOW, // window style 189 CW_USEDEFAULT, // initial x position 190 CW_USEDEFAULT, // initial y position 191 CW_USEDEFAULT, // initial x size 192 CW_USEDEFAULT, // initial y size 193 NULL, // parent window handle 194 NULL, // window menu handle 195 hInstance, // program instance handle 196 NULL) ; // creation parameters 197 ShowWindow(hwnd, iCmdShow); 198 UpdateWindow(hwnd); 199 while (GetMessage(&msg, NULL, 0, 0)) 200 { 201 TranslateMessage(&msg) ; 202 DispatchMessage(&msg) ; 203 } 204 205 return msg.wParam; 206 } 207 LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam) 208 { 209 WSADATA wsd; 210 static SOCKET sListen; 211 SOCKET sClient; 212 SOCKADDR_IN local, client; 213 int ret, iAddrSize = sizeof(client); 214 char szMessage[MSGSIZE]; 215 switch (message) 216 { 217 case WM_CREATE: 218 // Initialize Windows Socket library 219 WSAStartup(0x0202, &wsd); 220 221 // Create listening socket 222 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 223 224 // Bind 225 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 226 local.sin_family = AF_INET; 227 local.sin_port = htons(PORT); 228 bind(sListen, (struct sockaddr *)&local, sizeof(local)); 229 230 // Listen 231 listen(sListen, 3); 232 // Associate listening socket with FD_ACCEPT event 233 WSAAsyncSelect(sListen, hwnd, WM_SOCKET, FD_ACCEPT); 234 return 0; 235 case WM_DESTROY: 236 closesocket(sListen); 237 WSACleanup(); 238 PostQuitMessage(0); 239 return 0; 240 241 case WM_SOCKET: 242 if (WSAGETSELECTERROR(lParam)) 243 { 244 closesocket(wParam); 245 break; 246 } 247 248 switch (WSAGETSELECTEVENT(lParam)) 249 { 250 case FD_ACCEPT: 251 // Accept a connection from client 252 sClient = accept(wParam, (struct sockaddr *)&client, &iAddrSize); 253 254 // Associate client socket with FD_READ and FD_CLOSE event 255 WSAAsyncSelect(sClient, hwnd, WM_SOCKET, FD_READ | FD_CLOSE); 256 break; 257 case FD_READ: 258 ret = recv(wParam, szMessage, MSGSIZE, 0); 259 if (ret == 0 || ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET) 260 { 261 closesocket(wParam); 262 } 263 else 264 { 265 szMessage[ret] = '\0'; 266 send(wParam, szMessage, strlen(szMessage), 0); 267 } 268 break; 269 270 case FD_CLOSE: 271 closesocket(wParam); 272 break; 273 } 274 return 0; 275 } 276 277 return DefWindowProc(hwnd, message, wParam, lParam); 278 } 279 280 /*在我看来,WSAAsyncSelect是最简单的一种Winsock I/O模型(之所以说它简单是因为一个主线程就搞定了)。使用Raw Windows API写过窗口类应用程序的人应该都能看得懂。这里,我们需要做的仅仅是: 281 1.在WM_CREATE消息处理函数中,初始化Windows Socket library,创建监听套接字,绑定,监听,并且调用WSAAsyncSelect函数表示我们关心在监听套接字上发生的FD_ACCEPT事件; 282 2.自定义一个消息WM_SOCKET,一旦在我们所关心的套接字(监听套接字和客户端套接字)上发生了某个事件,系统就会调用WndProc并且message参数被设置为WM_SOCKET; 283 3.在WM_SOCKET的消息处理函数中,分别对FD_ACCEPT、FD_READ和FD_CLOSE事件进行处理; 284 4.在窗口销毁消息(WM_DESTROY)的处理函数中,我们关闭监听套接字,清除Windows Socket library下面这张用于WSAAsyncSelect函数的网络事件类型表可以让你对各个网络事件有更清楚的认识: 285 表1 286 FD_READ 应用程序想要接收有关是否可读的通知,以便读入数据 287 FD_WRITE 应用程序想要接收有关是否可写的通知,以便写入数据 288 FD_OOB 应用程序想接收是否有带外(OOB)数据抵达的通知 289 FD_ACCEPT 应用程序想接收与进入连接有关的通知 290 FD_CONNECT 应用程序想接收与一次连接或者多点join操作完成的通知 291 FD_CLOSE 应用程序想接收与套接字关闭有关的通知 292 FD_QOS 应用程序想接收套接字“服务质量”(QoS)发生更改的通知 293 FD_GROUP_QOS 应用程序想接收套接字组“服务质量”发生更改的通知(现在没什么用处,为未来套接字组的使用保留) 294 FD_ROUTING_INTERFACE_CHANGE 应用程序想接收在指定的方向上,与路由接口发生变化的通知 295 FD_ADDRESS_LIST_CHANGE 应用程序想接收针对套接字的协议家族,本地地址列表发生变化的通知 296 三.事件选择 297 Winsock提供了另一个有用的异步I/O模型。和WSAAsyncSelect模型类似的是,它也允许应用程序在一个或多个套接字上,接收以事件为基础的网络事件通知。对于表1总结的、由WSAAsyncSelect模型采用的网络事件来说,它们均可原封不动地移植到新模型。在用新模型开发的应用程序中,也能接收和处理所有那些事件。该模型最主要的差别在于网络事件会投递至一个事件对象句柄,而非投递至一个窗口例程。 298 还是让我们先看代码然后进行分析: 299 */ 300 #include <winsock2.h> 301 #include <stdio.h> 302 #define PORT 5150 303 #define MSGSIZE 1024 304 #pragma comment(lib, "ws2_32.lib") 305 int g_iTotalConn = 0; 306 SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS]; 307 WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS]; 308 DWORD WINAPI WorkerThread(LPVOID); 309 void Cleanup(int index); 310 int main() 311 { 312 WSADATA wsaData; 313 SOCKET sListen, sClient; 314 SOCKADDR_IN local, client; 315 DWORD dwThreadId; 316 int iaddrSize = sizeof(SOCKADDR_IN); 317 // Initialize Windows Socket library 318 WSAStartup(0x0202, &wsaData); 319 // Create listening socket 320 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 321 // Bind 322 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 323 local.sin_family = AF_INET; 324 local.sin_port = htons(PORT); 325 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN)); 326 // Listen 327 listen(sListen, 3); 328 // Create worker thread 329 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId); 330 while (TRUE) 331 { 332 // Accept a connection 333 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize); 334 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port)); 335 // Associate socket with network event 336 g_CliSocketArr[g_iTotalConn] = sClient; 337 g_CliEventArr[g_iTotalConn] = WSACreateEvent(); 338 WSAEventSelect(g_CliSocketArr[g_iTotalConn], 339 g_CliEventArr[g_iTotalConn], 340 FD_READ | FD_CLOSE); 341 g_iTotalConn++; 342 } 343 } 344 DWORD WINAPI WorkerThread(LPVOID lpParam) 345 { 346 int ret, index; 347 WSANETWORKEVENTS NetworkEvents; 348 char szMessage[MSGSIZE]; 349 while (TRUE) 350 { 351 ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE); 352 if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT) 353 { 354 continue; 355 } 356 index = ret - WSA_WAIT_EVENT_0; 357 WSAEnumNetworkEvents(g_CliSocketArr[index], g_CliEventArr[index], &NetworkEvents); 358 if (NetworkEvents.lNetworkEvents & FD_READ) 359 { 360 // Receive message from client 361 ret = recv(g_CliSocketArr[index], szMessage, MSGSIZE, 0); 362 if (ret == 0 || (ret == SOCKET_ERROR && WSAGetLastError() == WSAECONNRESET)) 363 { 364 Cleanup(index); 365 } 366 else 367 { 368 szMessage[ret] = '\0'; 369 send(g_CliSocketArr[index], szMessage, strlen(szMessage), 0); 370 } 371 } 372 if (NetworkEvents.lNetworkEvents & FD_CLOSE) 373 { 374 Cleanup(index); 375 } 376 } 377 return 0; 378 } 379 void Cleanup(int index) 380 { 381 closesocket(g_CliSocketArr[index]); 382 WSACloseEvent(g_CliEventArr[index]); 383 if (index < g_iTotalConn - 1) 384 { 385 g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1]; 386 g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1]; 387 } 388 389 g_iTotalConn--; 390 } 391 392 /*事件选择模型也比较简单,实现起来也不是太复杂,它的基本思想是将每个套接字都和一个WSAEVENT对象对应起来, 393 并且在关联的时候指定需要关注的哪些网络事件。一旦在某个套接字上发生了我们关注的事件(FD_READ和FD_CLOSE),与之相关联的WSAEVENT对象被Signaled。程序定义了两个全局数组,一个套接字数组,一个WSAEVENT对象数组,其大小都是MAXIMUM_WAIT_OBJECTS(64),两个数组中的元素一一对应。 394 同样的,这里的程序没有考虑两个问题,一是不能无条件的调用accept,因为我们支持的并发连接数有限。 395 解决方法是将套接字按MAXIMUM_WAIT_OBJECTS分组,每MAXIMUM_WAIT_OBJECTS个套接字一组,每一组分配一个 396 工作者线程;或者采用WSAAccept代替accept,并回调自己定义的Condition Function。第二个问题是没有对连接数 397 为0的情形做特殊处理,程序在连接数为0的时候CPU占用率为100%。 398 四.重叠I/O模型 399 Winsock2的发布使得Socket I/O有了和文件I/O统一的接口。我们可以通过使用Win32文件操纵函数ReadFile和 400 WriteFile来进行Socket I/O。伴随而来的,用于普通文件I/O的重叠I/O模型和完成端口模型对Socket I/O也适用了。 401 这些模型的优点是可以达到更佳的系统性能,但是实现较为复杂,里面涉及较多的C语言技巧。例如我们在完成端口 402 模型中会经常用到所谓的“尾随数据”。 403 1.用事件通知方式实现的重叠I/O模型 404 */ 405 #include <winsock2.h> 406 #include <stdio.h> 407 #define PORT 5150 408 #define MSGSIZE 1024 409 #pragma comment(lib, "ws2_32.lib") 410 typedef struct 411 { 412 WSAOVERLAPPED overlap; 413 WSABUF Buffer; 414 char szMessage[MSGSIZE]; 415 DWORD NumberOfBytesRecvd; 416 DWORD Flags; 417 }PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA; 418 int g_iTotalConn = 0; 419 SOCKET g_CliSocketArr[MAXIMUM_WAIT_OBJECTS]; 420 WSAEVENT g_CliEventArr[MAXIMUM_WAIT_OBJECTS]; 421 LPPER_IO_OPERATION_DATA g_pPerIODataArr[MAXIMUM_WAIT_OBJECTS]; 422 DWORD WINAPI WorkerThread(LPVOID); 423 void Cleanup(int); 424 int main() 425 { 426 WSADATA wsaData; 427 SOCKET sListen, sClient; 428 SOCKADDR_IN local, client; 429 DWORD dwThreadId; 430 int iaddrSize = sizeof(SOCKADDR_IN); 431 // Initialize Windows Socket library 432 WSAStartup(0x0202, &wsaData); 433 // Create listening socket 434 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 435 // Bind 436 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 437 local.sin_family = AF_INET; 438 local.sin_port = htons(PORT); 439 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN)); 440 // Listen 441 listen(sListen, 3); 442 // Create worker thread 443 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId); 444 while (TRUE) 445 { 446 // Accept a connection 447 sClient = accept(sListen, (struct sockaddr *)&client, &iaddrSize); 448 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port)); 449 g_CliSocketArr[g_iTotalConn] = sClient; 450 451 // Allocate a PER_IO_OPERATION_DATA structure 452 g_pPerIODataArr[g_iTotalConn] = (LPPER_IO_OPERATION_DATA)HeapAlloc( 453 GetProcessHeap(), 454 HEAP_ZERO_MEMORY, 455 sizeof(PER_IO_OPERATION_DATA)); 456 g_pPerIODataArr[g_iTotalConn]->Buffer.len = MSGSIZE; 457 g_pPerIODataArr[g_iTotalConn]->Buffer.buf = g_pPerIODataArr[g_iTotalConn]->szMessage; 458 g_CliEventArr[g_iTotalConn] = g_pPerIODataArr[g_iTotalConn]->overlap.hEvent = WSACreateEvent(); 459 // Launch an asynchronous operation 460 WSARecv( 461 g_CliSocketArr[g_iTotalConn], 462 &g_pPerIODataArr[g_iTotalConn]->Buffer, 463 1, 464 &g_pPerIODataArr[g_iTotalConn]->NumberOfBytesRecvd, 465 &g_pPerIODataArr[g_iTotalConn]->Flags, 466 &g_pPerIODataArr[g_iTotalConn]->overlap, 467 NULL); 468 469 g_iTotalConn++; 470 } 471 472 closesocket(sListen); 473 WSACleanup(); 474 return 0; 475 } 476 DWORD WINAPI WorkerThread(LPVOID lpParam) 477 { 478 int ret, index; 479 DWORD cbTransferred; 480 while (TRUE) 481 { 482 ret = WSAWaitForMultipleEvents(g_iTotalConn, g_CliEventArr, FALSE, 1000, FALSE); 483 if (ret == WSA_WAIT_FAILED || ret == WSA_WAIT_TIMEOUT) 484 { 485 continue; 486 } 487 index = ret - WSA_WAIT_EVENT_0; 488 WSAResetEvent(g_CliEventArr[index]); 489 WSAGetOverlappedResult( 490 g_CliSocketArr[index], 491 &g_pPerIODataArr[index]->overlap, 492 &cbTransferred, 493 TRUE, 494 &g_pPerIODataArr[g_iTotalConn]->Flags); 495 if (cbTransferred == 0) 496 { 497 // The connection was closed by client 498 Cleanup(index); 499 } 500 else 501 { 502 // g_pPerIODataArr[index]->szMessage contains the received data 503 g_pPerIODataArr[index]->szMessage[cbTransferred] = '\0'; 504 send(g_CliSocketArr[index], g_pPerIODataArr[index]->szMessage,\ 505 cbTransferred, 0); 506 // Launch another asynchronous operation 507 WSARecv( 508 g_CliSocketArr[index], 509 &g_pPerIODataArr[index]->Buffer, 510 1, 511 &g_pPerIODataArr[index]->NumberOfBytesRecvd, 512 &g_pPerIODataArr[index]->Flags, 513 &g_pPerIODataArr[index]->overlap, 514 NULL); 515 } 516 } 517 return 0; 518 } 519 void Cleanup(int index) 520 { 521 closesocket(g_CliSocketArr[index]); 522 WSACloseEvent(g_CliEventArr[index]); 523 HeapFree(GetProcessHeap(), 0, g_pPerIODataArr[index]); 524 if (index < g_iTotalConn - 1) 525 { 526 g_CliSocketArr[index] = g_CliSocketArr[g_iTotalConn - 1]; 527 g_CliEventArr[index] = g_CliEventArr[g_iTotalConn - 1]; 528 g_pPerIODataArr[index] = g_pPerIODataArr[g_iTotalConn - 1]; 529 } 530 g_pPerIODataArr[--g_iTotalConn] = NULL; 531 } 532 533 /*这个模型与上述其他模型不同的是它使用Winsock2提供的异步I/O函数WSARecv。在调用WSARecv时,指定一个WSAOVERLAPPED结构,这个调用不是阻塞的,也就是说,它会立刻返回。一旦有数据到达的时候,被指定的WSAOVERLAPPED结构中的hEvent被Signaled。由于下面这个语句 534 g_CliEventArr[g_iTotalConn] =g_pPerIODataArr[g_iTotalConn]->overlap.hEvent; 535 使得与该套接字相关联的WSAEVENT对象也被Signaled,所以WSAWaitForMultipleEvents的调用操作成功返回。 536 我们现在应该做的就是用与调用WSARecv相同的WSAOVERLAPPED结构为参数调用WSAGetOverlappedResult,从而得到 537 本次I/O传送的字节数等相关信息。在取得接收的数据后,把数据原封不动的发送到客户端,然后重新激活一个 538 WSARecv异步操作。 539 2.用完成例程方式实现的重叠I/O模型 540 */ 541 #include <WINSOCK2.H> 542 #include <stdio.h> 543 #define PORT 5150 544 #define MSGSIZE 1024 545 #pragma comment(lib, "ws2_32.lib") 546 typedef struct 547 { 548 WSAOVERLAPPED overlap; 549 WSABUF Buffer; 550 char szMessage[MSGSIZE]; 551 DWORD NumberOfBytesRecvd; 552 DWORD Flags; 553 SOCKET sClient; 554 }PER_IO_OPERATION_DATA, *LPPER_IO_OPERATION_DATA; 555 DWORD WINAPI WorkerThread(LPVOID); 556 void CALLBACK CompletionROUTINE(DWORD, DWORD, LPWSAOVERLAPPED, DWORD); 557 SOCKET g_sNewClientConnection; 558 BOOL g_bNewConnectionArrived = FALSE; 559 int main() 560 { 561 WSADATA wsaData; 562 SOCKET sListen; 563 SOCKADDR_IN local, client; 564 DWORD dwThreadId; 565 int iaddrSize = sizeof(SOCKADDR_IN); 566 // Initialize Windows Socket library 567 WSAStartup(0x0202, &wsaData); 568 // Create listening socket 569 sListen = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 570 // Bind 571 local.sin_addr.S_un.S_addr = htonl(INADDR_ANY); 572 local.sin_family = AF_INET; 573 local.sin_port = htons(PORT); 574 bind(sListen, (struct sockaddr *)&local, sizeof(SOCKADDR_IN)); 575 // Listen 576 listen(sListen, 3); 577 // Create worker thread 578 CreateThread(NULL, 0, WorkerThread, NULL, 0, &dwThreadId); 579 while (TRUE) 580 { 581 // Accept a connection 582 g_sNewClientConnection = accept(sListen, (struct sockaddr *)&client, &iaddrSize); 583 g_bNewConnectionArrived = TRUE; 584 printf("Accepted client:%s:%d\n", inet_ntoa(client.sin_addr), ntohs(client.sin_port)); 585 } 586 } 587 DWORD WINAPI WorkerThread(LPVOID lpParam) 588 { 589 LPPER_IO_OPERATION_DATA lpPerIOData = NULL; 590 while (TRUE) 591 { 592 if (g_bNewConnectionArrived) 593 { 594 // Launch an asynchronous operation for new arrived connection 595 lpPerIOData = (LPPER_IO_OPERATION_DATA)HeapAlloc( 596 GetProcessHeap(), 597 HEAP_ZERO_MEMORY, 598 sizeof(PER_IO_OPERATION_DATA)); 599 lpPerIOData->Buffer.len = MSGSIZE; 600 lpPerIOData->Buffer.buf = lpPerIOData->szMessage; 601 lpPerIOData->sClient = g_sNewClientConnection; 602 603 WSARecv(lpPerIOData->sClient, 604 &lpPerIOData->Buffer, 605 1, 606 &lpPerIOData->NumberOfBytesRecvd, 607 &lpPerIOData->Flags, 608 &lpPerIOData->overlap, 609 CompletionROUTINE); 610 611 g_bNewConnectionArrived = FALSE; 612 } 613 SleepEx(1000, TRUE); 614 } 615 return 0; 616 } 617 void CALLBACK CompletionROUTINE(DWORD dwError, 618 DWORD cbTransferred, 619 LPWSAOVERLAPPED lpOverlapped, 620 DWORD dwFlags) 621 { 622 LPPER_IO_OPERATION_DATA lpPerIOData = (LPPER_IO_OPERATION_DATA)lpOverlapped; 623 624 if (dwError != 0 || cbTransferred == 0) 625 { 626 // Connection was closed by client 627 closesocket(lpPerIOData->sClient); 628 HeapFree(GetProcessHeap(), 0, lpPerIOData); 629 } 630 else 631 { 632 lpPerIOData->szMessage[cbTransferred] = '\0'; 633 send(lpPerIOData->sClient, lpPerIOData->szMessage, cbTransferred, 0); 634 635 // Launch another asynchronous operation 636 memset(&lpPerIOData->overlap, 0, sizeof(WSAOVERLAPPED)); 637 lpPerIOData->Buffer.len = MSGSIZE; 638 lpPerIOData->Buffer.buf = lpPerIOData->szMessage; 639 WSARecv(lpPerIOData->sClient, 640 &lpPerIOData->Buffer, 641 1, 642 &lpPerIOData->NumberOfBytesRecvd, 643 &lpPerIOData->Flags, 644 &lpPerIOData->overlap, 645 CompletionROUTINE); 646 } 647 }