像星星的光

导航

BP神经

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

def sigmoid(x):    # 定义网络激活函数
    return 1/(1+np.exp(-x))

data_tr = pd.read_csv('D:\\anaconda\\人工智能数据\\xunlian.txt')  # 训练集样本
data_te = pd.read_csv('D:\\anaconda\\人工智能数据\\ceshi.txt')  # 测试集样本
n = len(data_tr)
yita = 0.85  # 自己设置学习速率

out_in = np.array([0.0, 0, 0, 0, -1])   # 输出层的输入,即隐层的输出
w_mid = np.zeros([3,4])  # 隐层神经元的权值&阈值
w_out = np.zeros([5])     # 输出层神经元的权值&阈值

delta_w_out = np.zeros([5])      # 输出层权值&阈值的修正量
delta_w_mid = np.zeros([3,4])   # 中间层权值&阈值的修正量
Err = []
'''
模型训练
'''
for j in range(1000):
    error = []
    for it in range(n):
        net_in = np.array([data_tr.iloc[it, 0], data_tr.iloc[it, 1], -1])  # 网络输入
        real = data_tr.iloc[it, 2]
        for i in range(4):
            out_in[i] = sigmoid(sum(net_in * w_mid[:, i]))  # 从输入到隐层的传输过程
        res = sigmoid(sum(out_in * w_out))   # 模型预测值
        error.append(abs(real-res))#误差

        print(it, '个样本的模型输出:', res, 'real:', real)
        delta_w_out = yita*res*(1-res)*(real-res)*out_in  # 输出层权值的修正量
        delta_w_out[4] = -yita*res*(1-res)*(real-res)     # 输出层阈值的修正量
        w_out = w_out + delta_w_out   # 更新,加上修正量

        for i in range(4):
            delta_w_mid[:, i] = yita*out_in[i]*(1-out_in[i])*w_out[i]*res*(1-res)*(real-res)*net_in   # 中间层神经元的权值修正量
            delta_w_mid[2, i] = -yita*out_in[i]*(1-out_in[i])*w_out[i]*res*(1-res)*(real-res)         # 中间层神经元的阈值修正量,第2行是阈值
        w_mid = w_mid + delta_w_mid   # 更新,加上修正量
    Err.append(np.mean(error))
print(w_mid,w_out)
plt.plot(Err)#训练集上每一轮的平均误差
plt.show()
plt.close()

'''
将测试集样本放入训练好的网络中去
'''
error_te = []
for it in range(len(data_te)):
    net_in = np.array([data_te.iloc[it, 0], data_te.iloc[it, 1], -1])  # 网络输入
    real = data_te.iloc[it, 2]
    for i in range(4):
        out_in[i] = sigmoid(sum(net_in * w_mid[:, i]))  # 从输入到隐层的传输过程
    res = sigmoid(sum(out_in * w_out))   # 模型预测值
    error_te.append(abs(real-res))
plt.plot(error_te)#测试集上每一轮的误差
plt.show()
np.mean(error_te)

 

 

import numpy as np
import scipy.special
import pylab
import matplotlib.pyplot as plt
class NeuralNetwork():
    # 初始化神经网络
    def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
         # 设置输入层节点,隐藏层节点和输出层节点的数量和学习率
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        self.lr = learningrate                #设置神经网络中的学习率
        # 使用正态分布,进行权重矩阵的初始化
        self.wih = np.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))  #(mu,sigma,矩阵)
        self.who = np.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))
        self.activation_function = lambda x: scipy.special.expit(x)       #激活函数设为Sigmod()函数
        pass
    # 定义训练神经网络
    def train(self,input_list,target_list):
        # 将输入、输出列表转换为二维数组
        inputs = np.array(input_list, ndmin=2).T  
        targets = np.array(target_list,ndmin= 2).T
        hidden_inputs = np.dot(self.wih, inputs)                           #计算到隐藏层的信号,dot()返回的是两个数组的点积
        hidden_outputs = self.activation_function(hidden_inputs)           #计算隐藏层输出的信号
        final_inputs = np.dot(self.who, hidden_outputs)                    #计算到输出层的信号
        final_outputs = self.activation_function(final_inputs)
        output_errors = targets - final_outputs                           #计算输出值与标签值的差值
        hidden_errors = np.dot(self.who.T,output_errors)


        #隐藏层和输出层权重更新
        self.who += self.lr * np.dot((output_errors*final_outputs*(1.0-final_outputs)),
                                       np.transpose(hidden_outputs))#transpose()转置
        #输入层和隐藏层权重更新
        self.wih += self.lr * np.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),
                                       np.transpose(inputs))#转置
        pass

        #查询神经网络
    def query(self, input_list):   # 转换输入列表到二维数
        inputs = np.array(input_list, ndmin=2).T                     #计算到隐藏层的信号
        hidden_inputs = np.dot(self.wih, inputs)                     #计算隐藏层输出的信号
        hidden_outputs = self.activation_function(hidden_inputs)        #计算到输出层的信号
        final_inputs = np.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        return final_outputs

#导入数据集
input_nodes = 784
hidden_nodes = 200
output_nodes = 10
learning_rate = 0.1
n = NeuralNetwork(input_nodes, hidden_nodes, output_nodes, learning_rate)
training_data_file = open(r"D:\\anaconda\\人工智能数据\\mnist_train.csv",'r')
training_data_list = training_data_file.readlines()     #方法用于读取所有行,并返回列表
training_data_file.close()
print(training_data_list[0])

#训练次数
epochs = 2
for e in range(epochs):
    #训练神经网络
    for record in training_data_list:
        all_values = record.split(",")                   #根据逗号,将文本数据进行拆分
        #将文本字符串转化为实数,并创建这些数字的数组。
        inputs = (np.asfarray(all_values[1:])/255.0 * 0.99) + 0.01
        #创建用零填充的数组,数组的长度为output_nodes,加0.01解决了0输入造成的问题
        targets = np.zeros(output_nodes) + 0.01     #10个元素都为0.01的数组
        #使用目标标签,将正确元素设置为0.99
        targets[int(all_values[0])] = 0.99#all_values[0]=='8'
        n.train(inputs,targets)
        pass
pass

#测试数据集
test_data_file = open(r"D:\\anaconda\\人工智能数据\\mnist_test.csv",'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

all_values = test_data_list[2].split(',')       #第3条数据,首元素为1
score = []
for record in test_data_list:
    #用逗号分割将数据进行拆分
    all_values = record.split(',')
    #正确的答案是第一个值
    correct_values = int(all_values[0])
    # print(correct_values,"是正确的期望值")
    #做输入
    inputs = (np.asfarray(all_values[1:])/255.0 * 0.99) + 0.01
    #测试网络 作输入
    outputs= n.query(inputs)#10行一列的矩阵
    #找出输出的最大值的索引
    label = np.argmax(outputs)
    # print(label,"是网络的输出值\n")
    #如果期望值和网络的输出值正确 则往score 数组里面加1 否则添加0
    if(label == correct_values):
        score.append(1)
    else:
        score.append(0)
    pass
pass
print(outputs)
score_array = np.asfarray(score)
print("正确率是:",(score_array.sum()/score_array.size)*100,'%')

 

posted on 2022-03-18 17:47  像星星的光  阅读(60)  评论(0编辑  收藏  举报