摘要:
内存屏障(Memory Barrier)与内存栅栏(Memory Fence)是同一个概念,不同的叫法。通过volatile标记,可以解决编译器层面的可见性与重排序问题。而内存屏障则解决了硬件层面的可见性与重排序问题。 先简单了解两个指令: Store:将处理器缓存的数据刷新到内存中。 Load:将 阅读全文
摘要:
一:为啥会有两次写?必要了解partial page write 问题 : InnoDB 的Page Size一般是16KB,其数据校验也是针对这16KB来计算的,将数据写入到磁盘是以Page为单位进行操作的。而计算机硬件和操作系统,写文件是以4KB作为单位的,那么每写一个innodb的page到磁 阅读全文
摘要:
方法一:在初始化时保存ApplicationContext对象 方法二:通过Spring提供的utils类获取ApplicationContext对象 方法三:继承自抽象类ApplicationObjectSupport 方法四:继承自抽象类WebApplicationObjectSupport 方 阅读全文
摘要:
一、SPI简介SPI 全称为 (Service Provider Interface) ,是JDK内置的一种服务提供发现机制。 目前有不少框架用它来做服务的扩展发现, 简单来说,它就是一种动态替换发现的机制, 举个例子来说, 有个接口,想运行时动态的给它添加实现,你只需要添加一个实现,而后,把新加的 阅读全文
摘要:
【问题1】为什么连接的时候是三次握手,关闭的时候却是四次握手?答:因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以 阅读全文
摘要:
三次握手换个易于理解的视角来看为什么要3次握手。客户端和服务端通信前要进行连接,“3次握手”的作用就是双方都能明确自己和对方的收、发能力是正常的。 第一次握手:客户端发送网络包,服务端收到了。这样服务端就能得出结论:客户端的发送能力、服务端的接收能力是正常的。 第二次握手:服务端发包,客户端收到了。 阅读全文
摘要:
0.前言对于"三次握手"我们耳熟能详,因为其相对的简单。但是,我们却不常听见“四次挥手”,就算听过也未必能详细地说明白它的具体过程。下面就为大家详尽,直观,完整地介绍“四次挥手”的过程。 1.“四次挥手”的详解所谓的四次挥手即TCP连接的释放(解除)。连接的释放必须是一方主动释放,另一方被动释放。以 阅读全文
摘要:
在 TCP 建立连接的三次握手连接阶段,如果客户端发送的第三个ACK包丢了,那么客户端和服务端分别进行什么处理呢?相信了解 tcp 协议的人,三次握手的过程肯定很了解了。第三次的 ack 包丢失就是说在 client 端接收到 syn + ack 之后,向 server 发送的 ack 包 由于各种 阅读全文
摘要:
隔离级别的实现:未提交读(RU:read-uncommitted):在RU级别中,事务读到的所有数据都是最新的数据,可能是事务提交后的数据,也可能是事务执行中的数据(可能会被回滚)。当隔离级别为RU时:①:所有的读不加锁,读到的数据都是最新的数据,性能最好。②:所有的写加行级锁,写完释放。提交读(R 阅读全文
摘要:
一、TCP connection 客户端与服务器之间数据的发送和返回的过程当中需要创建一个叫TCP connection的东西;由于TCP不存在连接的概念,只存在请求和响应,请求和响应都是数据包,它们之间都是经过由TCP创建的一个从客户端发起,服务器接收的类似连接的通道,这个连接可以一直保持,htt 阅读全文