算法学习笔记(4): 并查集及其优化

并查集

并查集,Disjoint-Set,或者通俗一点,叫做MergeFind-Set,是一种可以动态维护若干个不重叠的集合,并支持集合之间的合并与查询的数据结构。

集体来说,并查集支持下列两个操作:

  • Find,查询元素所属集合

  • Merge,将两个元素所属集合合并

一般来说,为了具体实现,我们将每一个集合选择一个固定的元素,作为整个集合的代表

所以,假设我们的元素是一堆整数,则,可以有

// N需要根据实际情况调整,grp是group的缩写
int grp[N];

初始化则设每一元素所在的组是其本身

for (int i = 0; i <= n; ++i) grp[i] = i;

做完了准备工作,我们需要思考如何合并?

考虑我们可以使用树形结构来储存,则,每一个树根都应该满足grp[root] = root

于是我们只需要修改树根就行了,即grp[root(x)] = root(y)

那么,问题来了,如何寻找根?

回到上述定义中的树形结构及其性质,则很容易可以推出一个递归算法:

int find(int x) {
    if (grp[x] != x) return find(grp[x]);
    return x;
}

于是,合并的算法也就可以写出来了

int merge(int x, int y) {
    grp[find(x)] = find(y);
}

优化

优化方案有3:路径压缩启发式合并按秩合并

路径压缩

其实,我们把整个grp的关系链画出来

graph TD; 1-->2; 1-->3; 2-->4; 4-->5;

实际上,我们可以不关注树的形状,意味着上图中的树实际上等价于

graph TD; 1-->2; 1-->3; 1-->4; 1-->5;

这样,我们就可以在find中将这个元素直接连接到其父节点上

则有

int find(int x) {
    if (grp[x] != x) return grp[x] = find(grp[x]);
    return x;
}

其实很多时候,只用路径压缩就已经够了

启发式合并

看上去很高级的名字,其实原理很简单

我们新建一个cnt数组,由于记录每一个元素所在集合中有多少个元素,在合并时,将元素多的作为根,则可以相对优化。

但是,毕竟是启发式合并,元素多的并不一定层数少,这是一个概率问题……

但好处是,启发式合并可以和路径压缩一起使用,这比只使用路径压缩快了一些,并且代码复杂度比较简单。所以我就不提供参考代码了

按秩合并

这里的就是指的深度,那么,为了优化,很明显,我们需要将层数少的合并到层数多的树中,且层数少的合并到层数多的并不会影响层数多的层数。

但是,如果两者层数相等呢?

举个例子,我们要合并14

graph TD; 1-->2; 1-->3; 4-->5;

那么由于两棵树层数相等,所以无论哪一个作为主树都可(假设我们以1为主树)

则合并之后应该时

graph TD; 1-->2; 1-->3; 1-->4; 4-->5;

可以发现,层数变多了……所以说,需要+1

分析完毕,代码该如何写?

首先时初始化,由于刚开始每一个元素都是一颗树,所以为1

int rank[N]; // 储存每一个元素的秩
for (int i = 0; i <= n; ++i) {
    rank[i] = 1;
    grp[i] = i;
}

寻找的代码不变

合并代码如下:

void merge(int x, int y) {
    int gx = find(x), gy = find(y);
    if (rank[gx] <= rank[gy])
        grp[gx] = gy;
    else
        grp[gy] = gx;
    if (rank[gx] == rank[gy] && gx != gy) // 防止合并相同元素
        ++rank[y];
}

按秩合并也可以和路径压缩一起用。

有证明其复杂度可以接近于常数


扩展

并查集也可以应用在最小生成树算法中,其中一个比较经典的算法:kruskal 算法就用到了并查集的辅助,而 kruskal 重构树更是好玩:算法学习笔记(30):Kruskal 重构树 - jeefy - 博客园

这方面可以参考其他资料,这里不做过多的展开。

并查集多用于树上问题,在环的处理上非常高效。


练习


所以,并查集你应该掌握了,下课!

posted @ 2023-01-12 17:07  jeefy  阅读(94)  评论(0编辑  收藏  举报