Planar Shadow 平面投影(假阴影),低开销的阴影实现方式

参考:

Unity无光照假阴影Shader实现及常见问题总结 - 简书 (jianshu.com)

Unity Shader - Planar Shadow - 平面阴影_unity 平面阴影-CSDN博客

详解平面阴影 Planar Shadow (概念篇) - 知乎 (zhihu.com)

详解平面阴影 Planar Shadow(方向光篇) - 知乎 (zhihu.com)

详解平面阴影 Planar Shadow(点光源篇) - 知乎 (zhihu.com)

 

游戏实现阴影的常见处理方式 (动态人或物,非烘焙)

1.实时光照
实时光照属于真阴影,一般来说效果是最好的,但是开销也是最大的。 Shadow Map(阴影贴图)跟Soft Shadows(软阴影) - JeasonBoy - 博客园 (cnblogs.com)

2.脚底放置阴影面片模拟阴影
一般是无光照小型游戏的常见解决方案,开销较小,表现形式较差,面片是死的,无法根据人物动作变化

3.通过顶点shader变换成面片模拟阴影
如上图所示
优点 : 表现形式上比方案2强,阴影可跟随顶点动画,开销比实时阴影要少
缺点 : 无法在 "非平面" 使用,比如在斜坡上,会穿帮

4.通过 Projector 或者 Decal 来模拟投射阴影
优点 : 表现效果更近一步,也可以在斜面上进行投影了
缺点 : 开销也更近一步

 

方式3实现思路
1.我们通过2个Pass来渲染,第二个Pass正常渲染角色,第一个Pass模拟渲染阴影
2.我们需要将模型的所有 Y 值压到地面高度,这样就形成了一个头顶俯视图的阴影效果
3.我们再对 XZ 方向进行偏移,偏移量根据模型原先 Y 值高度为参考做插值
4.阴影的方向我们规定在 XZ 平面上 (X=0,Z=1) 为初始默认方向,以这个向量为基准进行旋转
5.旋转我们可以通过 二维旋转矩阵 来计算
 
Shader代码
复制代码
Shader "loom/fake_shadow_test_pass_order"
{
    Properties
    {
        //材质属性面板
        _MainTex ("主贴图",2D) = "white"{}

        _GroundY ("地面Y高度 (外部传入)",float) = 0
        _Shadow_Color("影子颜色",Color) = (1,1,1,1)
        _Shadow_Length("影子长度",float) = 0
        _Shadow_Rotated("影子旋转角度",range(0,360)) = 0
    }

    SubShader
    {
        Tags
        {
            "Queue" = "Geometry+1"  //注意这里很重要,因为影子是要绘制在地面上,所以地面必须应该先绘制,否则blend混合的时候就是和背后的skybox进行混合了
        }

        pass
        {
            Stencil{

                Ref 1
                //Comp取值依次为  0:Disabled  1:Never  2:Less  3:Equal  4:LessEqual  5:Greater  6:NotEqual  7:GreaterEqual  8:Always
                Comp Greater //或者改成NotEqual
                //Pass取值依次为  0:Keep  1:Zero  2:Replace  3:IncrementSaturate  4:DecrementSaturate  5:Invert  6:IncrementWrap  7:DecrementWrap
                Pass Replace
            }

            Blend SrcAlpha oneMinusSrcAlpha   

            //因为和地面重叠所以做个偏移
            //也可以不做偏移,将传入的地面高度抬高一点即可
            Offset -2,-2

            CGPROGRAM

            #pragma vertex vert
            #pragma fragment frag
            #include "UnityCG.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
            };

            struct v2f
            {
                float4 pos : SV_POSITION;
                //这里worldPos一定是float4,因为vert()中实际是手动两次空间变换如果是float3会导致w分量丢失,透视除法会出错
                //如果不参与变换,只是传到frag()中使用的话,比如进行Blinn-Phong光照计算V向量那么float3就够了
                float4 worldPos : TEXCOORD0;
                //做阴影插值和Clip地面以下阴影用
                float cacheWorldY : TEXCOORD1;
            };

            half _GroundY;
            half4 _Shadow_Color;   
            half _Shadow_Length;     
            half _Shadow_Rotated;
            
            v2f vert(appdata v)
            {
                v2f o = (v2f)0;

                //获取世界空间的位置
                o.worldPos = mul(unity_ObjectToWorld,v.vertex);
                //缓存世界空间下的y分量,后续两点作用
                //第一点 : 做插值用做计算xz的偏移量的多少
                //第二点 : 防止在地面以下
                o.cacheWorldY = o.worldPos.y;

                //设置世界空间下y的值全部都设置为传入的地面高度值
                o.worldPos.y = _GroundY;

                //根据世界空间下模型y值减去传入的地面高度值_GroundY
                //以这个值为传入 lerp(0,_Shadow_Length) 进行线性插值
                //最后获取到模型y值由低到高的插值lerpVal
                //这个max()函数 假设腿部在地面以下则裁切掉腿部阴影,后续使用clip后无需Max
                //half lerpVal = lerp(0,_Shadow_Length,max(0,o.cacheWorldY-_GroundY));
                half lerpVal = lerp(0,_Shadow_Length,o.cacheWorldY-_GroundY);

                //常量PI
                //const float PI = 3.14159265;
                //角度转换成弧度
                half radian = _Shadow_Rotated / 180.0 * UNITY_PI;

                //旋转矩阵,对(0,1)向量进行旋转,计算旋转后的向量,该向量就是阴影方向
                //2D旋转矩阵如下
                // [x]        [ cosθ , -sinθ ]
                // [ ]  乘以  
                // [y]        [ sinθ , cosθ  ]
                // x' = xcosθ - ysinθ
                // y' = xsinθ + ycosθ
                half2 ratatedAngle = half2((0*cos(radian)-1*sin(radian)),(0*sin(radian)+1*cos(radian)));
                
                //用以y轴高度为参考计算的插值 lerpVal 去 乘以一个旋转后的方向向量,作为阴影的方向
                //最终得到偏移后的阴影位置
                o.worldPos.xz += lerpVal * ratatedAngle;
                
                //变换到裁剪空间
                o.pos = mul(UNITY_MATRIX_VP,o.worldPos);

                return o;
            }

            fixed4 frag(v2f i) : SV_TARGET
            {
                //剔除低于地面部分的片段
                clip(i.cacheWorldY - _GroundY);
                //用作阴影的Pass直接输出颜色即可
                return _Shadow_Color;
            }

            ENDCG
        }

        pass
        {
            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag
            #include "UnityCG.cginc"

            sampler2D _MainTex;half4 _MainTex_ST;

            struct appdata{
                float4 vertex : POSITION;
                float2 uv0 : TEXCOORD0;
            };

            struct v2f{
                float4 pos : SV_POSITION;
                float2 uv : TEXCOORD0;
            };

            v2f vert(appdata v)
            {
                v2f o = (v2f)0;
                o.pos = UnityObjectToClipPos(v.vertex);
                o.uv = TRANSFORM_TEX(v.uv0,_MainTex);
                return o;
            }

            fixed4 frag(v2f i) : SV_TARGET
            {
                return tex2D(_MainTex,i.uv);
            }
            ENDCG
        }
    }
}
复制代码

 

posted @   JeasonBoy  阅读(454)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示