[leetcode] Path Sum II
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:
Given the below binary tree and sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1
return
[ [5,4,11,2], [5,8,4,5] ]
https://oj.leetcode.com/problems/path-sum-ii/
思路:要输出所有结果,dfs枚举。
class Solution { public List<List<Integer>> pathSum(TreeNode root, int sum) { List<List<Integer>> result = new ArrayList<>(); List<Integer> tmp = new ArrayList<>(); pathSumHelper(root,tmp,result,sum); return result; } private void pathSumHelper(TreeNode root, List<Integer> tmp, List<List<Integer>> result, int sum){ if(root == null) return; if(root.left==null && root.right==null && root.val == sum){ tmp.add(root.val); result.add(new ArrayList<Integer>(tmp)); tmp.remove(tmp.size()-1); return; } tmp.add(root.val); pathSumHelper(root.left,tmp,result,sum-root.val); pathSumHelper(root.right,tmp,result,sum-root.val); tmp.remove(tmp.size()-1); } }
第三遍记录:最好采用第二遍的方法,在叶子节点的时候就判断是否满足条件,但是注意此时该节点并未加入到tmp中去,所以需要tmp中先加入root.val,然后 res中添加tmp,最后tmo中的root.val要删掉。
如果在叶子节点的子节点,null节点判断(此时判断n==0即可),但是左右null节点都会满足条件而产生两边结果。
以下方法会有重复元素
import java.util.ArrayList; import java.util.List; public class Solution { public List<List<Integer>> pathSum(TreeNode root, int sum) { List<List<Integer>> res = new ArrayList<List<Integer>>(); if (root == null) return res; List<Integer> tmp = new ArrayList<Integer>(); pathSumHelper(root, sum, res, tmp); return res; } private void pathSumHelper(TreeNode root, int sum, List<List<Integer>> res, List<Integer> tmp) { if (root == null) { if (sum == 0) res.add(new ArrayList<Integer>(tmp)); return; } tmp.add(root.val); pathSumHelper(root.left, sum - root.val, res, tmp); pathSumHelper(root.right, sum - root.val, res, tmp); tmp.remove(tmp.size() - 1); } public static void main(String[] args) { TreeNode root = new TreeNode(5); root.left = new TreeNode(4); root.left.left = new TreeNode(11); root.right = new TreeNode(8); root.right.right = new TreeNode(7); System.out.println(new Solution().pathSum(root, 20)); } }