[leetcode] Scramble String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great / \ gr eat / \ / \ g r e at / \ a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat / \ rg eat / \ / \ r g e at / \ a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae / \ rg tae / \ / \ r g ta e / \ t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
https://oj.leetcode.com/problems/scramble-string/
思路1:枚举DFS,比如要比较s1和s2,s1分成a1和b1,s2分成a2和b2,需要分别比较((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))。
思路2:DP。dp[i][j][k]表示s1从i开始k长度的字符串与s2从从j开始k长度的字符串是否是scrambled string。
当k=1时,只需比较s1.charAt(i)是否等于s2.charAt(j)即可。
当k>1是,需要枚举分割点,令左半边长度为l,则右边长度为k-l,(1<l<k)。对于每个l,比较((a1~a2) && (b1~b2))或者 ((a1~b2) && (a1~b2))。
public class Solution { public boolean isScramble(String s1, String s2) { if (s1.length() != s2.length()) return false; int len = s1.length(); boolean dp[][][] = new boolean[len][len][len + 1]; for (int k = 1; k <= len; k++) { for (int i = 0; i <= len - k; i++) { for (int j = 0; j <= len - k; j++) { if (k == 1) dp[i][j][k] = (s1.charAt(i) == s2.charAt(j)); else { for (int l = 1; l < k; l++) { if (dp[i][j][l] && dp[i + l][j + l][k - l] || dp[i][j + k - l][l] && dp[i + l][j][k - l]) { dp[i][j][k] = true; break; } } } } } } return dp[0][0][len]; } public static void main(String[] args) { System.out.println(new Solution().isScramble("great", "rgeat")); System.out.println(new Solution().isScramble("great", "rgtae")); System.out.println(new Solution().isScramble("great", "rgtta")); } }
第二遍参考:暴力法,注意长度为1时的判断,不要忘记了。
public class Solution { public boolean isScramble(String s1, String s2) { int len1 = s1.length(); int len2 = s2.length(); if (len1 != len2) return false; if (len1 == 0) return true; if (len1 == 1) return s1.equals(s2); char[] c1 = s1.toCharArray(); char[] c2 = s2.toCharArray(); Arrays.sort(c1); Arrays.sort(c2); for (int i = 0; i < len1; i++) { if (c1[i] != c2[i]) return false; } for (int i = 1; i < len1; i++) { String s11 = s1.substring(0, i); String s12 = s1.substring(i); String s21 = s2.substring(0, i); String s22 = s2.substring(i); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; else { String s31 = s2.substring(0, len1 - i); String s32 = s2.substring(len1 - i); if (isScramble(s11, s32) && isScramble(s12, s31)) return true; } } return false; } }
DP解法注意递推公式: if (dp[i][j][l] && dp[i + l][j + l][k - l] || dp[i][j + k - l][l] && dp[i + l][j][k - l])
第三遍记录:
dfs法重新写了下超时, 排序优化后就可以过了。
import java.util.Arrays; public class Solution { public boolean isScramble(String s1, String s2) { //terminal condition int len1 = s1.length(); int len2 = s2.length(); if (len1 != len2) return false; if (s1.equals(s2)) return true; //optimization char[] c1 = s1.toCharArray(); char[] c2 = s2.toCharArray(); Arrays.sort(c1); Arrays.sort(c2); for (int i = 0; i < len1; i++) { if (c1[i] != c2[i]) return false; } //recursion for (int i = 1; i < len1; i++) { String s11 = s1.substring(0, i); String s12 = s1.substring(i, len1); String s21 = s2.substring(0, i); String s22 = s2.substring(i, len2); if (isScramble(s11, s21) && isScramble(s12, s22)) return true; String s31 = s2.substring(0, len2 - i); String s32 = s2.substring(len2 - i, len2); if (isScramble(s11, s32) && isScramble(s12, s31)) return true; } return false; } public static void main(String[] args) { System.out.println(new Solution().isScramble("great", "rgeat")); System.out.println(new Solution().isScramble("great", "rgtae")); System.out.println(new Solution().isScramble("abcdefghijklmnopq", "efghijklmnopqcadb")); } }
参考:
http://blog.csdn.net/pickless/article/details/11501443
http://www.blogjava.net/sandy/archive/2013/05/22/399605.html