[leetcode] Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

https://oj.leetcode.com/problems/maximum-subarray/

思路1:Kadane算法,复杂度O(n)。

思路2:分治。对于每次递归,将数组分半,最大和可能存在

  1. 完全在左面部分(递归求解)
  2. 完全在右面部分(递归求解)
  3. 横跨左右两个部分(从中间(必须包含中间元素,否则左右无法连接)向两边加,记录最大值)

注意点:注意负数的处理,此题最大值为负数时依然返回最大的负数,也有题目负数时要求返回0。注意两种情况下最大值的初始化等细节的区别。

 

思路1代码:

public class Solution {
	public int maxSubArray(int[] A) {
		int n = A.length;
		int i;
		int maxSum = A[0];
		int thisSum = 0;
		for (i = 0; i < n; i++) {
			thisSum += A[i];
			if (thisSum > maxSum)
				maxSum = thisSum;
			if (thisSum < 0)
				thisSum = 0;
		}
		return maxSum;
	}

	public static void main(String[] args) {
		System.out.println(new Solution().maxSubArray(new int[] { -2, 1, -3, 4,
				-1, 2, 1, -5, 4 }));
	}
}

思路2代码:

public class Solution {
    public int maxSubArray(int[] A) {
        return maxSub(A, 0, A.length - 1);
    }

    private int maxSub(int[] a, int left, int right) {
        if (left == right)
            return a[left];
        int mid = (left + right) / 2;
        int maxLeft = maxSub(a, left, mid);
        int maxRight = maxSub(a, mid + 1, right);

        int leftHalf = 0, leftHalfMax = Integer.MIN_VALUE;
        int rightHalf = 0, rightHalfMax = Integer.MIN_VALUE;

        for (int i = mid; i >= left; i--) {
            leftHalf += a[i];
            if (leftHalf > leftHalfMax)
                leftHalfMax = leftHalf;
        }

        for (int i = mid + 1; i <= right; i++) {
            rightHalf += a[i];
            if (rightHalf > rightHalfMax)
                rightHalfMax = rightHalf;
        }

        return Math.max(Math.max(maxLeft, maxRight), (leftHalfMax + rightHalfMax));
    }

    public static void main(String[] args) {
        System.out.println(new Solution().maxSubArray(new int[] { -2, -1, -3, -2, -5 }));
    }
}

第三遍记录:
  注意递归终止条件: 如果right边界是incluside的情况, 跳出的情况要是(left>=right),有可能right比left还小。
public class Solution {
    public int maxSubArray(int[] A) {
        int n = A.length;
        return maxSub(A,0,A.length-1);
    }
    
    private int maxSub(int[] A, int left, int right){
        if(left>=right){
            return A[left];
        }
        int mid = left+(right-left)/2;
        int leftMax = maxSub(A,left,mid-1);
        int rightMax=maxSub(A,mid+1,right);
        
        
        int midLeftSum=0;
        int thisSum=0;
        for(int i=mid-1;i>=left;i--){
            thisSum+=A[i];
            if(thisSum>midLeftSum){
                midLeftSum=thisSum;
            }
        }
        int midRightSum=0;
        thisSum=0;
        for(int i=mid+1;i<=right;i++){
            thisSum+=A[i];
            if(thisSum>midRightSum){
                midRightSum=thisSum;
            }
        }
        
        return Math.max(midLeftSum+A[mid]+midRightSum,Math.max(leftMax,rightMax));
        
    }
    
}

 

补充记录:DP解法,时空复杂度都是O(N), 可以推广到求 两个子序列的最大和(类似股票第三题),用前后两个dp解决。

public class Solution {
    public int maxSubArray(int[] a) {
        int n = a.length;
        int[] dp = new int[n];
        int res = a[0];
        dp[0] = a[0];
        for (int i = 1; i < n; i++) {
            dp[i] = Math.max(dp[i - 1] + a[i], a[i]);
            res = Math.max(res, dp[i]);
        }
        return res;
    }
    
}

 

 

参考:

Data Structures and Algorithm Analysis in C

http://blog.csdn.net/xshengh/article/details/12708291

 

posted @ 2014-06-26 20:07  jdflyfly  阅读(211)  评论(0编辑  收藏  举报