信息安全系统实现与设计第十一周——《Unix/Linux系统编程》第十二章自学

第十二章

这一章讨论了块设备 I/O和缓冲区管理;解释了块设备I/O的原理和I/O缓冲的优点;论述了Unix 的缓冲区管理算法,并指出了其不足之处;还利用信号量设计了新的缓冲区管理算法,以提高 I/O缓冲区的缓存效率和性能;表明了简单的PV算法易于实现,缓存效果好,不存在死锁和饥饿问题;还提出了一个比较 Unix 缓冲区管理算法和PV算法性能的编程方案。

12.1 块设备I/O缓冲区

I/O缓冲的基本原理非常简单。文件系统使用一系列I/O缓冲区作为块设备的缓存内存。当进程试图读取(dev,blk)标识的磁盘块时。它首先在缓冲区缓存中搜索分配给磁盘块的缓冲区。如果该缓冲区存在并且包含有效数据、那么它只需从缓冲区中读取数据、而无须再次从磁盘中读取数据块。如果该缓冲区不存在,它会为磁盘块分配一个缓冲区,将数据从磁盘读人缓冲区,然后从缓冲区读取数据。当某个块被读入时、该缓冲区将被保存在缓冲区缓存中,以供任意进程对同一个块的下一次读/写请求使用。同样,当进程写入磁盘块时,它首先会获取一个分配给该块的缓冲区。然后,它将数据写入缓冲区,将缓冲区标记为脏,以延迟写入,并将其释放到缓冲区缓存中。由于脏缓冲区包含有效的数据,因此可以使用它来满足对同一块的后续读/写请求,而不会引起实际磁盘I/O。脏缓冲区只有在被重新分配到不同的块时才会写人磁盘。

12.2 Unix I/O缓冲区管理算法

(1)I/O缓冲区:内核中的一系列NBUF 缓冲区用作缓冲区缓存。每个缓冲区用一个结构体表示。

typdef struct buf[
struct buf*next__free;		// freelist pointer
struct buf *next__dev;		// dev_list pointer
int dev,blk;				// assigmed disk block;
int opcode;					// READ|wRITE
int dirty;					// buffer data modified
int async;					// ASYNC write flag 
int valid;					//buffer data valid 
int buay;					// buffer is in use 
int wanted;					// some process needs this buffer 
struct semaphore lock=1;	// buffer locking semaphore; value=1
struct semaphore iodone=0;  // for process to wait for I/0 completion;// block data area 
char buf[BLKSIZE];
} BUFFER;
BUFFER buf[NBUF],*freelist; // NBUF buffers and free buffer list

(2)设备表:每个块设备用一个设备表结构表示。

struct devtab{
u16 dev;				// major device number 
BUFFER *dev_list;   	// device buffer list 
BUFFER *io_queue;		// device I/0 queue  
}devtab[NDEV];

(3)缓冲区初始化:当系统启动时,所有I/O缓冲区都在空闲列表中,所有设备列表和I/O队列均为空。

(4)缓冲区列表:当缓冲区分配给(dev,blk)时,它会被插入设备表的 dev_list中。如果缓冲区当前正在使用,则会将其标记为 BUSY(繁忙)并从空闲列表中删除。繁忙缓冲区也可能会在设备表的I/O队列中。

Unix算法的一些具体说明:

(1)数据的一致性;

(2)缓存效果;

(3)临界区。

Unix算法的缺点:

(1)效率低下;

(2)缓存效果不可预知;

(3)可能会出现饥饿;

(4)该算法使用只适用于单处理系统的休眠/唤醒操作。

12.3 新的I/O缓冲区管理算法

信号量的主要优点:

(1)计数信号量可用来表示可用资源的数量,例如∶空闲缓冲区的数量。

(2)当多个进程等待一个资源时,信号量上的V操作只会释放一个等待进程,该进程不必重试,因为它保证拥有资源。

使用信号量的缓冲区管理算法:

假设有一个单处理器内核(一次运行一个进程)。使用计数信号量上的P/V来设计满足以下要求的新的缓冲区管理算法∶

(1)保证数据一致性。

(2)良好的缓存效果。

(3)高效率∶没有重试循环,没有不必要的进程"唤醒"。

(4)无死锁和饥饿。

12.4 PV算法

BUFFER *getb1k(dev,blk):
while(1){(1). P(free);
//get a free buffer first if (bp in dev_1ist){(2). if (bp not BUSY){
remove bp from freelist;P(bp);
// lock bp but does not wait
(3).return bp;
// bp in cache but BUSY V(free);
// give up the free buffer
(4).P(bp);
// wait in bp queue
return bp;v
// bp not in cache,try to create a bp=(dev,blk)
(5).bp = frist buffer taken out of freelist;P(bp);
// lock bp,no wait
(6).if(bp dirty){
awzite(bp);
// write bp out ASYNC,no wait
continue;
// continue from (1)
(7).reassign bp to(dev,blk);1/ mark bp data invalid,not dir return bp;-
// end of while(1);
brelse(BUFFER *bp),
{
(8).iF (bp queue has waiter)( V(bp); return; ]
(9).if(bp dirty && free queue has waiter){ awrite(bp);zeturn;}(10).enter bp into(tail of) freelist;V(bp);V(free);
}

(1)缓冲区唯一性

(2)无重试循环

(3)无不必要唤醒

(4)缓存效果

(5)无死锁和饥饿

12.5 实践

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
int main (){
    FILE* fd;
    fd=fopen("/src/hello","r");
    if(NULL==fd){
        perror("cannot open file");
        return -1;
    }
    return 0;
}

posted @ 2021-11-21 20:07  20191303姜淳译  阅读(11)  评论(0编辑  收藏  举报