三对角线性方程组(tridiagonal systems of equations)的求解
三对角线性方程组(tridiagonal systems of equations)
三对角线性方程组,对于熟悉数值分析的同学来说,并不陌生,它经常出现在微分方程的数值求解和三次样条函数的插值问题中。三对角线性方程组可描述为以下方程组:
其中\(1\leq i \leq n, a_{1}=0, c_{n}=0.\) 以上方程组写成矩阵形式为\(Ax=d\),即:
三对角线性方程组的求解采用追赶法或者Thomas算法,它是Gauss消去法在三对角线性方程组这种特殊情形下的应用,因此,主要思想还是Gauss消去法,只是会更加简单些。我们将在下面的算法详述中给出该算法的具体求解过程。
当然,该算法并不总是稳定的,但当系数矩阵\(A\)为严格对角占优矩阵(Strictly D iagonally Dominant, SDD)或对称正定矩阵(Symmetric Positive Definite, SPD)时,该算法稳定。对于不熟悉SDD或者SPD的读者,也不必担心,我们还会在我们的博客中介绍这类矩阵。现在,我们只要记住,该算法对于部分系数矩阵\(A\)是可以求解的。
算法详述
追赶法或者Thomas算法的具体步骤如下:
- 创建新系数\(c_{i}^{*}\)和\(d_{i}^{*}\)来代替原先的\(a_{i},b_{i},c_{i}\),公式如下:
- 改写原先的方程组\(Ax=d\)如下:
- 计算解向量\(x\),如下:
以上算法得到的解向量\(x\)即为原方程\(Ax=d\)的解。
下面,我们来证明该算法的正确性,只需要证明该算法保持原方程组的形式不变。
首先,当\(i=1\)时,
当\(i>1\)时,
结合\(a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=d_{i}\),只需要证明\(x_{i-1}+c_{i-1}^{*}x_{i}=d_{i-1}^{*}\),而这已经在该算法的第(3)步的中的计算\(x_{i-1}\)中给出。证明完毕。
Python实现
我们将要求解的线性方程组如下:
接下来,我们将用Python来实现该算法,函数为TDMA,输入参数为列表a,b,c,d, 输出为解向量x,代码如下:
# use Thomas Method to solve tridiagonal linear equation
# algorithm reference: https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
import numpy as np
# parameter: a,b,c,d are list-like of same length
# tridiagonal linear equation: Ax=d
# b: main diagonal of matrix A
# a: main diagonal below of matrix A
# c: main diagonal upper of matrix A
# d: Ax=d
# return: x(type=list), the solution of Ax=d
def TDMA(a,b,c,d):
try:
n = len(d) # order of tridiagonal square matrix
# use a,b,c to create matrix A, which is not necessary in the algorithm
A = np.array([[0]*n]*n, dtype='float64')
for i in range(n):
A[i,i] = b[i]
if i > 0:
A[i, i-1] = a[i]
if i < n-1:
A[i, i+1] = c[i]
# new list of modified coefficients
c_1 = [0]*n
d_1 = [0]*n
for i in range(n):
if not i:
c_1[i] = c[i]/b[i]
d_1[i] = d[i] / b[i]
else:
c_1[i] = c[i]/(b[i]-c_1[i-1]*a[i])
d_1[i] = (d[i]-d_1[i-1]*a[i])/(b[i]-c_1[i-1] * a[i])
# x: solution of Ax=d
x = [0]*n
for i in range(n-1, -1, -1):
if i == n-1:
x[i] = d_1[i]
else:
x[i] = d_1[i]-c_1[i]*x[i+1]
x = [round(_, 4) for _ in x]
return x
except Exception as e:
return e
def main():
a = [0, 1, 1, 1, 1]
b = [4, 4, 4, 4, 4]
c = [1, 1, 1, 1, 0]
d = [1, 0.5, -1, 3, 2]
'''
a = [0, 2, 1, 3]
b = [1, 1, 2, 1]
c = [2, 3, 0.5, 0]
d = [2, -1, 1, 3]
'''
x = TDMA(a, b, c, d)
print('The solution is %s'%x)
main()
运行该程序,输出结果为:
The solution is [0.2, 0.2, -0.5, 0.8, 0.3]
本算法的Github地址为: https://github.com/percent4/Numeric_Analysis/blob/master/TDMA.py .
最后再次声明,追赶法或者Thomas算法并不是对所有的三对角矩阵都是有效的,只是部分三对角矩阵可行。