[LeetCode] Additive Number

Af first I read the title as "Addictive Number". Anyway, this problem can be solved elegantly using recursion. This post shares a nice recursive C++ code with handling of the follow-up by implementing string addition function.

The code is rewritten as follows.

 1 class Solution {
 2 public:
 3     bool isAdditiveNumber(string num) {
 4         int n = num.size();
 5         for (int i = 1; i <= n/2; i++)
 6             for (int j = 1; j <= (n-i)/2; j++)
 7                 if (additive(num.substr(0, i), num.substr(i, j), num.substr(i + j)))
 8                     return true;
 9         return false;
10     }
11 private:
12     bool additive(string a, string b, string c) {
13         string s = add(a, b);
14         if (s == c) return true;
15         if (c.size() <= s.size() || s.compare(c.substr(0, s.size())))
16             return false;
17         return additive(b, s, c.substr(s.size()));
18     }
19     string add(string& a, string& b) {
20         string s;
21         int i = a.size() - 1, j = b.size() - 1, c = 0;
22         while (i >= 0 || j >= 0) {
23             int d = (i >= 0 ? (a[i--] - '0') : 0) + (j >= 0 ? (b[j--] - '0') : 0) + c;
24             s += (d % 10 + '0');
25             c = d / 10;
26         }
27         if (c) s += ('0' + c);
28         reverse(s.begin(), s.end());
29         return s;
30     }
31 };

This problem can also be solved iteratively, like peisi's code, which is rewritten in C++ below.

 1 class Solution {
 2 public:
 3     bool isAdditiveNumber(string num) {
 4         int n = num.length();
 5         for (int i = 1; i <= n/2; i++)
 6             for (int j = 1; max(i, j) <= n - i - j; j++)
 7                 if (additive(i, j, num)) return true;
 8         return false;
 9     }
10 private:
11     bool additive(int i, int j, string& num) {
12         if (num[i] == '0' && j > 1) return false;
13         string a = num.substr(0, i);
14         string b = num.substr(i, j);
15         for (int k = i + j; k < num.length(); k += b.length()) {
16             b.swap(a);
17             b = add(a, b);
18             string tail = num.substr(k);
19             if (b.compare(tail.substr(0, b.size()))) return false;
20         }
21         return true;
22     }
23     string add(string& a, string& b) { 
24         string s;
25         int i = a.size() - 1, j = b.size() - 1, c = 0;
26         while (i >= 0 || j >= 0) {
27             int d = (i >= 0 ? (a[i--] - '0') : 0) + (j >= 0 ? (b[j--] - '0') : 0) + c;
28             s += (d % 10 + '0');
29             c = d / 10;
30         }
31         if (c) s += ('0' + c);
32         reverse(s.begin(), s.end());
33         return s;
34     }
35 };

If you are a Pythoner, you may also love Stefan's code, which is pasted below.

 1 def isAdditiveNumber(self, num):
 2     n = len(num)
 3     for i, j in itertools.combinations(range(1, n), 2):
 4         a, b = num[:i], num[i:j]
 5         if b != str(int(b)):
 6             continue
 7         while j < n:
 8             c = str(int(a) + int(b))
 9             if not num.startswith(c, j):
10                 break
11             j += len(c)
12             a, b = b, c
13         if j == n:
14             return True
15     return False

 

posted @ 2015-11-20 13:16  jianchao-li  阅读(861)  评论(0编辑  收藏  举报