[LeetCode] Course Schedule II

Well, this problem is spiritually similar to to Course Schedule. You only need to store the nodes in the order you visit into a vector during BFS or DFS. Well, for DFS, a final reversal is required.


BFS

 1 class Solution {
 2 public:
 3     vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
 4         vector<unordered_set<int>> graph = make_graph(numCourses, prerequisites);
 5         vector<int> degrees = compute_indegree(graph);
 6         queue<int> zeros;
 7         for (int i = 0; i < numCourses; i++)
 8             if (!degrees[i]) zeros.push(i);
 9         vector<int> toposort;
10         for (int i = 0; i < numCourses; i++) {
11             if (zeros.empty()) return {};
12             int zero = zeros.front();
13             zeros.pop();
14             toposort.push_back(zero);
15             for (int neigh : graph[zero]) {
16                 if (!--degrees[neigh])
17                     zeros.push(neigh);
18             }
19         }
20         return toposort;
21     }
22 private:
23     vector<unordered_set<int>> make_graph(int numCourses, vector<pair<int, int>>& prerequisites) {
24         vector<unordered_set<int>> graph(numCourses);
25         for (auto pre : prerequisites)
26             graph[pre.second].insert(pre.first);
27         return graph; 
28     }
29     vector<int> compute_indegree(vector<unordered_set<int>>& graph) {
30         vector<int> degrees(graph.size(), 0);
31         for (auto neighbors : graph)
32             for (int neigh : neighbors)
33                 degrees[neigh]++;
34         return degrees;
35     }
36 };

DFS

 1 class Solution {
 2 public:
 3     vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
 4         vector<unordered_set<int>> graph = make_graph(numCourses, prerequisites);
 5         vector<int> toposort;
 6         vector<bool> onpath(numCourses, false), visited(numCourses, false);
 7         for (int i = 0; i < numCourses; i++)
 8             if (!visited[i] && dfs(graph, i, onpath, visited, toposort))
 9                 return {};
10         reverse(toposort.begin(), toposort.end());
11         return toposort;
12     }
13 private:
14     vector<unordered_set<int>> make_graph(int numCourses, vector<pair<int, int>>& prerequisites) {
15         vector<unordered_set<int>> graph(numCourses);
16         for (auto pre : prerequisites)
17             graph[pre.second].insert(pre.first);
18         return graph;
19     }
20     bool dfs(vector<unordered_set<int>>& graph, int node, vector<bool>& onpath, vector<bool>& visited, vector<int>& toposort) { 
21         if (visited[node]) return false;
22         onpath[node] = visited[node] = true; 
23         for (int neigh : graph[node])
24             if (onpath[neigh] || dfs(graph, neigh, onpath, visited, toposort))
25                 return true;
26         toposort.push_back(node);
27         return onpath[node] = false;
28     }
29 };

 

posted @ 2015-06-28 02:39  jianchao-li  阅读(363)  评论(0编辑  收藏  举报