[LeetCode] Minimum Size Subarray Sum
The problem statement has stated that there are both O(n)
and O(nlogn)
solutions to this problem. Let's see the O(n)
solution first (taken from this link), which is pretty clever and short.
1 class Solution { 2 public: 3 int minSubArrayLen(int s, vector<int>& nums) { 4 int start = 0, sum = 0, minlen = INT_MAX; 5 for (int i = 0; i < (int)nums.size(); i++) { 6 sum += nums[i]; 7 while (sum >= s) { 8 minlen = min(minlen, i - start + 1); 9 sum -= nums[start++]; 10 } 11 } 12 return minlen == INT_MAX ? 0 : minlen; 13 } 14 };
Well, you may wonder how can it be O(n)
since it contains an inner while
loop. Well, the key is that the while
loop executes at most once for each starting position start
. Then start
is increased by 1
and the while
loop moves to the next element. Thus the inner while
loop runs at most O(n)
times during the whole for
loop from 0
to nums.size() - 1
. Thus both the for
loop and while
loop has O(n)
time complexity in total and the overall running time is O(n)
.
There is another O(n)
solution in this link, which is easier to understand and prove it is O(n)
. I have rewritten it below.
1 class Solution { 2 public: 3 int minSubArrayLen(int s, vector<int>& nums) { 4 int n = nums.size(); 5 int left = 0, right = 0, sum = 0, minlen = INT_MAX; 6 while (right < n) { 7 do sum += nums[right++]; 8 while (right < n && sum < s); 9 while (left < right && sum - nums[left] >= s) 10 sum -= nums[left++]; 11 if (sum >= s) minlen = min(minlen, right - left); 12 } 13 return minlen == INT_MAX ? 0 : minlen; 14 } 15 };
Now let's move on to the O(nlogn)
solution. Well, this less efficient solution is far more difficult to come up with. The idea is to first maintain an array of accumulated summations of elements innums
. Specifically, for nums = [2, 3, 1, 2, 4, 3]
in the problem statement, sums = [0, 2, 5, 6, 8, 12, 15]
. Then for each element in sums
, if it is not less than s
, we search for the first element that is greater than sums[i] - s
(in fact, this is just what the upper_bound
function does) in sums
using binary search.
Let's do an example. Suppose we reach 12
in sums
, which is greater than s = 7
. We then search for the first element in sums
that is greater than sums[i] - s = 12 - 7 = 5
and we find 6
. Then we know that the elements in nums
that correspond to 6, 8, 12
sum to a number 12 - 5 = 7
which is not less than s = 7
. Let's check for that: 6
in sums
corresponds to 1
in nums
, 8
insums
corresponds to 2
in nums
, 12
in sums
corresponds to 4
in nums
. 1, 2, 4
sum to 7
, which is 12
in sums
minus 5
in sums
.
We add a 0
in the first position of sums
to account for cases like nums = [3], s = 3
.
The code is as follows.
1 class Solution { 2 public: 3 int minSubArrayLen(int s, vector<int>& nums) { 4 vector<int> sums = accumulate(nums); 5 int minlen = INT_MAX; 6 for (int i = 1; i <= nums.size(); i++) { 7 if (sums[i] >= s) { 8 int p = upper_bound(sums, 0, i, sums[i] - s); 9 if (p != -1) minlen = min(minlen, i - p + 1); 10 } 11 } 12 return minlen == INT_MAX ? 0 : minlen; 13 } 14 private: 15 vector<int> accumulate(vector<int>& nums) { 16 vector<int> sums(nums.size() + 1, 0); 17 for (int i = 1; i <= nums.size(); i++) 18 sums[i] = nums[i - 1] + sums[i - 1]; 19 return sums; 20 } 21 int upper_bound(vector<int>& sums, int left, int right, int target) { 22 int l = left, r = right; 23 while (l < r) { 24 int m = l + ((r - l) >> 1); 25 if (sums[m] <= target) l = m + 1; 26 else r = m; 27 } 28 if (sums[r] > target) return r; 29 if (sums[l] > target) return l; 30 return -1; 31 } 32 };
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ASP.NET Core 模型验证消息的本地化新姿势
· 从零开始开发一个 MCP Server!
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Ai满嘴顺口溜,想考研?浪费我几个小时
· Browser-use 详细介绍&使用文档