[Algorithms] Longest Common Substring

The Longest Common Substring (LCS) problem is as follows:

Given two strings s and t, find the length of the longest string r, which is a substring of both s and t.

This problem is a classic application of Dynamic Programming. Let's define the sub-problem (state) P[i][j] to be the length of the longest substring ends at i of s and j of t. Then the state equations are

  1. P[i][j] = 0 if s[i] != t[j];
  2. P[i][j] = P[i - 1][j - 1] + 1 if s[i] == t[j].

This algorithm gives the length of the longest common substring. If we want the substring itself, we simply find the largest P[i][j] and return s.substr(i - P[i][j] + 1, P[i][j]) or t.substr(j - P[i][j] + 1, P[i][j]).

Then we have the following code.

复制代码
 1 string longestCommonSubstring(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<vector<int> > dp(m, vector<int> (n, 0));
 4     int start = 0, len = 0;
 5     for (int i = 0; i < m; i++) {
 6         for (int j = 0; j < n; j++) {
 7             if (i == 0 || j == 0) dp[i][j] = (s[i] == t[j]);
 8             else dp[i][j] = (s[i] == t[j] ? dp[i - 1][j - 1] + 1: 0);
 9             if (dp[i][j] > len) {
10                 len = dp[i][j];
11                 start = i - len + 1;
12             }
13         }
14     }
15     return s.substr(start, len);
16 }
复制代码

The above code costs O(m*n) time complexity and O(m*n) space complexity. In fact, it can be optimized to O(min(m, n)) space complexity. The observations is that each time we update dp[i][j], we only need dp[i - 1][j - 1], which is simply the value of the above grid before updates.

Now we will have the following code.

复制代码
 1 string longestCommonSubstringSpaceEfficient(string s, string t) {
 2     int m = s.length(), n = t.length();
 3     vector<int> cur(m, 0);
 4     int start = 0, len = 0, pre = 0;
 5     for (int j = 0; j < n; j++) {
 6         for (int i = 0; i < m; i++) {
 7             int temp = cur[i];
 8             cur[i] = (s[i] == t[j] ? pre + 1 : 0);
 9             if (cur[i] > len) {
10                 len = cur[i];
11                 start = i - len + 1;
12             }
13             pre = temp;
14         }
15     }
16     return s.substr(start, len);
17 }
复制代码

In fact, the code above is of O(m) space complexity. You may choose the small size for cur and repeat the same code using if..else.. to save more spaces :)

posted @   jianchao-li  阅读(337)  评论(0编辑  收藏  举报
编辑推荐:
· 理解Rust引用及其生命周期标识(下)
· 从二进制到误差:逐行拆解C语言浮点运算中的4008175468544之谜
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
阅读排行:
· 2025成都.NET开发者Connect圆满结束
· 后端思维之高并发处理方案
· 千万级大表的优化技巧
· 在 VS Code 中,一键安装 MCP Server!
· 10年+ .NET Coder 心语 ── 继承的思维:从思维模式到架构设计的深度解析
点击右上角即可分享
微信分享提示