[LeetCode] Longest Palindromic Substring

This problem has a long story. There are just too many solutions on the web and it can be studied for a long time before you fully grasp it. Morever, it can induce many other concepts or problems (longest palindromic subsequence, longest common substring, etc).

The simplest way to solve it is to use two-dimensional DP. We denote P[i][j] to be an indicator of whether the substring from i to j (inclusive) is a palindrome. It is obvious that the following relationships hold:

  1. P[i][i] = 1 (each character itself is palindromic);
  2. P[i][i + 1] = s[i] == s[j] (two neighboring characters are palindromic if they are the same);
  3. P[i][j] = P[i + 1][j - 1] && s[i] == s[j] (If the substring is palindrome, then adding the same character at both of its two ends still gives a palindrome).

1 and 2 are base cases and 3 is the general case.

Then we will have the following unoptimiezd DP code.

复制代码
 1     string longestPalindrome(string s) {
 2         int start = 0, len = 1, n = s.length();
 3         bool dp[1000][1000] = {false};
 4         for (int i = 0; i < n; i++)
 5             dp[i][i] = true;
 6         for (int i = 0; i < n - 1; i++) {
 7             dp[i][i + 1] = s[i] == s[i + 1];
 8             if (dp[i][i + 1]) {
 9                 start = i;
10                 len = 2;
11             }
12         }
13         for (int l = 3; l <= n; l++) {
14             for (int i = 0; i < n - l + 1; i++) {
15                 int j = i + l - 1;
16                 dp[i][j] = dp[i + 1][j - 1] && s[i] == s[j];
17                 if (dp[i][j]) {
18                     start = i;
19                     len = l;
20                 }
21             }
22         }
23         return s.substr(start, len);
24     }
复制代码

Note that each time when we update dp[i][j], we only need dp[i + 1][j - 1] from the left column, so we can maintain a single variable for it and reduce the space complexity from O(n^2) to O(n). The code now becomes as follows.

复制代码
 1     string longestPalindrome(string s) {
 2         int start = 0, len = 1, n = s.length();
 3         bool cur[1000] = {false};
 4         bool pre;
 5         cur[0] = true;
 6         for (int j = 1; j < n; j++) {
 7             cur[j] = true;
 8             pre = cur[j - 1];
 9             cur[j - 1] = s[j - 1] == s[j];
10             if (cur[j - 1] && len < 2) {
11                 start = j - 1;
12                 len = 2;
13             }
14             for (int i = j - 2; i >= 0; i--) {
15                 bool temp = cur[i];
16                 cur[i] = pre && s[i] == s[j];
17                 if (cur[i] && j - i + 1 > len) {
18                     start = i;
19                     len = j - i + 1;
20                 }
21                 pre = temp;
22             }
23         }
24         return s.substr(start, len);
25     }
复制代码

We may also traverse the string and expand to left and right from any character to obtain the longest palindrome. The following code should be self-explanatory.

复制代码
 1     string search(string s, int left, int right) {
 2         int l = left, r = right;
 3         while (l >= 0 && r < s.length() && s[l] == s[r]) {
 4             l--;
 5             r++;
 6         }
 7         return s.substr(l + 1, r - l - 1);
 8     }
 9     
10     string longestPalindrome(string s) {
11         string longest = s.substr(0, 1);
12         for (int i = 0; i < s.length() - 1; i++) {
13             string tmp1 = search(s, i, i);
14             string tmp2 = search(s, i, i + 1);
15             if (tmp1.length() > longest.length()) longest = tmp1;
16             if (tmp2.length() > longest.length()) longest = tmp2;
17         }
18         return longest;
19     }
复制代码

Of course, this problem still has a non-trivial O(n) algorithm, named Manacher's algorithm. This page has a nice explanation for it. The final code is shown below.

复制代码
 1     string process(string s) {
 2         int n = s.length();
 3         string t(2 * n + 3, '#');
 4         t[0] = '$';
 5         t[2 * n + 2] = '%';
 6         for (int i = 0; i < n; i++)
 7             t[2 * (i + 1)] = s[i];
 8         return t;
 9     }
10     
11     string longestPalindrome(string s) {
12         string t = process(s);
13         int n = t.length();
14         int* plen = new int[n]();
15         int center = 0, right = 0;
16         for (int i = 1; i < n - 1; i++) {
17             int i_mirror = 2 * center - i;
18             plen[i] = right > i ? min(plen[i_mirror], right - i) : 0;
19             while (t[i + plen[i] + 1] == t[i - plen[i] - 1])
20                 plen[i]++;
21             if (i + plen[i] > right) {
22                 center = i;
23                 right = i + plen[i];
24             }
25         }
26         int maxlen = 0;
27         for (int i = 1; i < n - 1; i++) {
28             if (plen[i] > maxlen) {
29                 center = i;
30                 maxlen = plen[i];
31             }
32         }
33         delete[] plen;
34         return s.substr((center - 1 - maxlen) / 2, maxlen);
35     }
复制代码
posted @   jianchao-li  阅读(311)  评论(0编辑  收藏  举报
编辑推荐:
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ASP.NET Core 模型验证消息的本地化新姿势
阅读排行:
· 从零开始开发一个 MCP Server!
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Ai满嘴顺口溜,想考研?浪费我几个小时
· Browser-use 详细介绍&使用文档
点击右上角即可分享
微信分享提示