2020年大三下学期第十四周学习心得
import cv2 vc = cv2.VideoCapture("C:\\Users\\hp\\Desktop\\test.mp4") # 读入视频文件 # vc = cv2.VideoCapture("C:/Users/jason/Desktop/152821AA.MP4") rval, firstFrame = vc.read() firstFrame = cv2.resize(firstFrame, (640, 360), interpolation=cv2.INTER_CUBIC) gray_firstFrame = cv2.cvtColor(firstFrame, cv2.COLOR_BGR2GRAY) # 灰度化,避免条带失真。 灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255,灰度图像通常在单个电磁波频谱(如可见光)内测量每个像素的亮度得到的。 firstFrame = cv2.GaussianBlur(gray_firstFrame, (21, 21), 0) # 高斯模糊,用于去噪,减少图像噪声以及降低细节层次,图像噪声,图像数据中的不必要的或多余的干扰信息 prveFrame = firstFrame.copy()#颜色空间转换 # 遍历视频的每一帧 while True: (ret, frame) = vc.read() # 如果没有获取到数据,则结束循环 if not ret: break # 对获取到的数据进行预处理 frame = cv2.resize(frame, (640, 360), interpolation=cv2.INTER_CUBIC) gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray_frame = cv2.GaussianBlur(gray_frame, (3, 3), 0) cv2.imshow("current_frame", gray_frame) cv2.imshow("prveFrame", prveFrame) # 计算当前帧与上一帧的差别 frameDiff = cv2.absdiff(prveFrame, gray_frame) cv2.imshow("frameDiff", frameDiff) prveFrame = gray_frame.copy() cv2.waitKey(0) # 忽略较小的差别 retVal, thresh = cv2.threshold(frameDiff, 25, 255, cv2.THRESH_BINARY) # 对阈值图像进行填充补洞 thresh = cv2.dilate(thresh, None, iterations=2) image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) text = "Unoccupied" # 遍历轮廓 for contour in contours: # if contour is too small, just ignore it if cv2.contourArea(contour) < 50: # 面积阈值 continue # 计算最小外接矩形(非旋转) (x, y, w, h) = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) text = "Occupied!" # cv2.putText(frame, "Room Status: {}".format(text), (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.putText(frame, "F{}".format(text), (20, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) cv2.imshow('frame_with_result', frame) cv2.imshow('thresh', thresh) cv2.imshow('frameDiff', frameDiff) # 处理按键效果 key = cv2.waitKey(60) & 0xff if key == 27: # 按下ESC时,退出 break elif key == ord(' '): # 按下空格键时,暂停 cv2.waitKey(0) cv2.waitKey(0) vc.release()
截图: