在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取、插入等。
小笔总结了以下几种重置索引的方法:
import pandas as pd import numpy as npdf = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd'])
#得到df:
a b c d
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15
4 16 17 18 19# 对其重排顺序,得到索引顺序倒序的数据
df2 = df.sort_values('a', ascending=False)
# 得到df2:
a b c d
4 16 17 18 19
3 12 13 14 15
2 8 9 10 11
1 4 5 6 7
0 0 1 2 3
下面对df2重置索引,使其索引从0开始
法一:
简单粗暴:
df2.index = range(len(df2))
# 输出df2: a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3
法二:
df2 = df2.reset_index(drop=True) # drop=True表示删除原索引,不然会在数据表格中新生成一列'index'数据 # 输出df2: a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3
法三:
df2 = df2.reindex(labels=range(len(df)) #labels是第一个参数,可以省略 # 输出df2 a b c d 0 16 17 18 19 1 12 13 14 15 2 8 9 10 11 3 4 5 6 7 4 0 1 2 3# 注:df = df.reindex(index=[]),在原数据结构上新建行(index是新索引,若新建数据索引在原数据中存在,则引用原有数据),默认用NaN填充(使用fill_value=0 来修改填充值自定义,此处我设置的是0)。
df = df.reindex(columns=[]),在原数据结构上新建列,方法与新建行一样
法四:
df2 = df2.set_index(keys=['a', 'c']) # 将原数据a, c列的数据作为索引。 # drop=True,默认,是将数据作为索引后,在表格中删除原数据 # append=False,默认,是将新设置的索引设置为内层索引,原索引是外层索引# 输出df2,注意a,c列是索引:
b d
a c
16 18 17 19
12 14 13 15
8 10 9 11
4 6 5 7
0 2 1 3
欢迎关注公众号,一起交流python技术。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具
· AI 智能体引爆开源社区「GitHub 热点速览」
· C#/.NET/.NET Core技术前沿周刊 | 第 29 期(2025年3.1-3.9)