Java集合框架(三)

一、Map的实现类的结构:

  • |----Map:双列数据,存储key-value对的数据 ---类似于高中的函数:y = f(x)
    |--------HashMap:作为Map的主要实现类;线程不安全的,效率高;存储null的key和value
    |--------LinkedHashMap:保证在遍历map元素时,可以按照添加的顺序实现遍历。
    |------------原因:在原有的HashMap底层结构基础上,添加了一对指针,指向前一个和后一个元素。对于频繁的遍历操作,此类执行效率高于HashMap。
    |--------TreeMap:保证按照添加的key-value对进行排序,实现排序遍历。此时考虑key的自然排序或定制排序底层使用红黑树
    |----Hashtable:作为古老的实现类;线程安全的,效率低;不能存储null的key和value
    |--------Properties:常用来处理配置文件。key和value都是String类型
    HashMap的底层:数组+链表(jdk7及之前), 数组+链表+红黑树(jdk8)

二、Map结构的理解:

  • Map中的key:无序的、不可重复的,使用Set存储所有的key ---> key所在的类要重写equals()和hashCode() (以HashMap为例)
    Map中的value:无序的、可重复的,使用Collection存储所有的value --->value所在的类要重写equals()
    一个键值对:key-value构成了一个Entry对象。
    Map中的entry:无序的、不可重复的,使用Set存储所有的entry

三、HashMap的底层实现原理?

      (以jdk7为例说明)
      HashMap map = new HashMap():
      在实例化以后,底层创建了长度是16的一维数组Entry[] table。
      ...可能已经执行过多次put...
      map.put(key1,value1):
      首先,调用key1所在类的hashCode()计算key1哈希值,此哈希值经过某种算法计算以后,得到在Entry数组中的存放位置。
      如果此位置上的数据为空,此时的key1-value1添加成功。 ----情况1
      如果此位置上的数据不为空,(意味着此位置上存在一个或多个数据(以链表形式存在)),比较key1和已经存在的一个或多个数据
      的哈希值:
              如果key1的哈希值与已经存在的数据的哈希值都不相同,此时key1-value1添加成功。----情况2
              如果key1的哈希值和已经存在的某一个数据(key2-value2)的哈希值相同,继续比较:调用key1所在类的equals(key2)方法,比较:
                      如果equals()返回false:此时key1-value1添加成功。----情况3
                      如果equals()返回true:使用value1替换value2(map的函数对应特性:同一个key只有唯一value)
       
      补充:关于情况2和情况3:此时key1-value1和原来的数据以链表的方式存储。
      在不断的添加过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。
      
      jdk8 相较于jdk7在底层实现方面的不同:
      1. new HashMap():底层没有创建一个长度为16的数组
      2. jdk 8底层的数组是:Node[],而非Entry[]
      3. 首次调用put()方法时,底层创建长度为16的数组
      4. jdk7底层结构只有:数组+链表。jdk8中底层结构:数组+链表+红黑树。
         4.1 形成链表时,七上八下(jdk7:新的元素指向旧的元素。jdk8:旧的元素指向新的元素)
         4.2 当数组的某一个索引位置上的元素以链表形式存在的数据个数 > 8 且当前数组的长度 > 64时,此时此索引位置上的所数据改为使用红黑树存储。
      
      DEFAULT_INITIAL_CAPACITY : HashMap的默认容量,16
      DEFAULT_LOAD_FACTOR:HashMap的默认加载因子:0.75
      threshold:扩容的临界值,=容量*填充因子:16 * 0.75 => 12
      TREEIFY_THRESHOLD:Bucket中链表长度大于该默认值,转化为红黑树:8
      MIN_TREEIFY_CAPACITY:桶中的Node被树化时最小的hash表容量:64

LinkedMap补充细节:增加Entry节点指向的链表

HashSet以HashMap为基础,元素都存在key当中,value都指向一个Present常量


Map的方法

  • 添加、删除、修改操作:
    Object put(Object key,Object value):将指定key-value添加到(或修改)当前map对象中
    void putAll(Map m):将m中的所有key-value对存放到当前map中
    Object remove(Object key):移除指定key的key-value对,并返回value
    void clear():清空当前map中的所有数据
  • 元素查询的操作:
    Object get(Object key):获取指定key对应的value
    boolean containsKey(Object key):是否包含指定的key
    boolean containsValue(Object value):是否包含指定的value
    int size():返回map中key-value对的个数
    boolean isEmpty():判断当前map是否为空
    boolean equals(Object obj):判断当前map和参数对象obj是否相等
  • 元视图操作的方法:
    Set keySet():返回所有key构成的Set集合
    Collection values():返回所有value构成的Collection集合
    Set entrySet():返回所有key-value对构成的Set集合
        Map map = new HashMap();
        map.put("AA",123);
        map.put(45,1234);
        map.put("BB",56);

        //遍历所有的key集:keySet()
        Set set = map.keySet();
        Iterator iterator = set.iterator();
        while(iterator.hasNext()){
            System.out.println(iterator.next());
        }

        System.out.println();
        //遍历所有的value集:values()
        Collection values = map.values();
        for(Object obj : values){
            System.out.println(obj);
        }
        System.out.println();
        //遍历所有的key-value
        //方式一:entrySet()
        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            //entrySet集合中的元素都是entry
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
        System.out.println();
        //方式二:
        Set keySet = map.keySet();
        Iterator iterator2 = keySet.iterator();
        while(iterator2.hasNext()){
            Object key = iterator2.next();
            Object value = map.get(key);
            System.out.println(key + "=====" + value);

        }

TreeMap两种排序方式的使用

    //向TreeMap中添加key-value,要求key必须是由同一个类创建的对象
    //因为要按照key进行排序:自然排序 、定制排序
    //自然排序
    @Test
    public void test1(){
        TreeMap map = new TreeMap();
        User u1 = new User("Tom",23);
        User u2 = new User("Jerry",32);
        User u3 = new User("Jack",20);
        User u4 = new User("Rose",18);

        map.put(u1,98);
        map.put(u2,89);
        map.put(u3,76);
        map.put(u4,100);

        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
    }

    //定制排序
    @Test
    public void test2(){
        TreeMap map = new TreeMap(new Comparator() {
            @Override
            public int compare(Object o1, Object o2) {
                if(o1 instanceof User && o2 instanceof User){
                    User u1 = (User)o1;
                    User u2 = (User)o2;
                    return Integer.compare(u1.getAge(),u2.getAge());
                }
                throw new RuntimeException("输入的类型不匹配!");
            }
        });
        User u1 = new User("Tom",23);
        User u2 = new User("Jerry",32);
        User u3 = new User("Jack",20);
        User u4 = new User("Rose",18);

        map.put(u1,98);
        map.put(u2,89);
        map.put(u3,76);
        map.put(u4,100);

        Set entrySet = map.entrySet();
        Iterator iterator1 = entrySet.iterator();
        while (iterator1.hasNext()){
            Object obj = iterator1.next();
            Map.Entry entry = (Map.Entry) obj;
            System.out.println(entry.getKey() + "---->" + entry.getValue());

        }
    }

Properties

//Properties:常用来处理配置文件。key和value都是String类型
    public static void main(String[] args)  {
        FileInputStream fis = null;
        try {
            Properties pros = new Properties();

            fis = new FileInputStream("jdbc.properties");
            pros.load(fis);//加载流对应的文件

            String name = pros.getProperty("name");
            String password = pros.getProperty("password");

            System.out.println("name = " + name + ", password = " + password);
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            if(fis != null){
                try {
                    fis.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

Collections

/*
reverse(List):反转 List 中元素的顺序
shuffle(List):对 List 集合元素进行随机排序
sort(List):根据元素的自然顺序对指定 List 集合元素按升序排序
sort(List,Comparator):根据指定的 Comparator 产生的顺序对 List 集合元素进行排序
swap(List,int, int):将指定 list 集合中的 i 处元素和 j 处元素进行交换

Object max(Collection):根据元素的自然顺序,返回给定集合中的最大元素
Object max(Collection,Comparator):根据 Comparator 指定的顺序,返回给定集合中的最大元素
Object min(Collection)
Object min(Collection,Comparator)
int frequency(Collection,Object):返回指定集合中指定元素的出现次数
void copy(List dest,List src):将src中的内容复制到dest中
boolean replaceAll(List list,Object oldVal,Object newVal):使用新值替换 List 对象的所有旧值

 */
    @Test
    public void test2(){
        List list = new ArrayList();
        list.add(123);
        list.add(43);
        list.add(765);
        list.add(-97);
        list.add(0);

        //报异常:IndexOutOfBoundsException("Source does not fit in dest")
//        List dest = new ArrayList();
//        Collections.copy(dest,list);
        //正确的:
        List dest = Arrays.asList(new Object[list.size()]);
        System.out.println(dest.size());//list.size();
        Collections.copy(dest,list);

        System.out.println(dest);


        /*
        Collections 类中提供了多个 synchronizedXxx() 方法,
        该方法可使将指定集合包装成线程同步的集合,从而可以解决
        多线程并发访问集合时的线程安全问题

         */
        //返回的list1即为线程安全的List
        List list1 = Collections.synchronizedList(list);
    }
posted @ 2022-05-20 06:27  JayerListen  阅读(34)  评论(0编辑  收藏  举报