机器学习环境配置系列五之keras2
keras一个大坑就是配置文件的问题,网上会给很多的误导,让我走了很多弯路。
1、安装keras2
conda install keras
2、环境配置
echo ‘{ "epsilon": 1e-07, "floatx": "float32", "image_data_format": "channels_last", "backend": "theano" }’> ~/.keras/keras.json
如果用的tensorflow,backend要更换为tensorflow这个变量
3、问题说明
关于环境配置网上大多是1.几的版本,这个与2点几的版本有很大的区别,请大家一定注意。并且keras上了2这个版本后,代码也出现了很多的变化。下面就是对vgg16.py代码关于python2.7+keras2的代码更新
from __future__ import division, print_function import os, json from glob import glob import numpy as np from scipy import misc, ndimage from scipy.ndimage.interpolation import zoom from keras import backend as K from keras.layers.normalization import BatchNormalization from keras.utils.data_utils import get_file from keras.models import Sequential from keras.layers.core import Flatten, Dense, Dropout, Lambda #from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D # Conv2D: Keras2 from keras.layers.pooling import GlobalAveragePooling2D from keras.optimizers import SGD, RMSprop, Adam from keras.preprocessing import image # In case we are going to use the TensorFlow backend we need to explicitly set the Theano image ordering from keras import backend as K K.set_image_dim_ordering('th') vgg_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((3,1,1)) def vgg_preprocess(x): """ Subtracts the mean RGB value, and transposes RGB to BGR. The mean RGB was computed on the image set used to train the VGG model. Args: x: Image array (height x width x channels) Returns: Image array (height x width x transposed_channels) """ x = x - vgg_mean return x[:, ::-1] # reverse axis rgb->bgr class Vgg16(): """ The VGG 16 Imagenet model """ def __init__(self): self.FILE_PATH = 'http://files.fast.ai/models/' self.create() self.get_classes() def get_classes(self): """ Downloads the Imagenet classes index file and loads it to self.classes. The file is downloaded only if it not already in the cache. """ fname = 'imagenet_class_index.json' fpath = get_file(fname, self.FILE_PATH+fname, cache_subdir='models') with open(fpath) as f: class_dict = json.load(f) self.classes = [class_dict[str(i)][1] for i in range(len(class_dict))] def predict(self, imgs, details=False): """ Predict the labels of a set of images using the VGG16 model. Args: imgs (ndarray) : An array of N images (size: N x width x height x channels). details : ?? Returns: preds (np.array) : Highest confidence value of the predictions for each image. idxs (np.ndarray): Class index of the predictions with the max confidence. classes (list) : Class labels of the predictions with the max confidence. """ # predict probability of each class for each image all_preds = self.model.predict(imgs) # for each image get the index of the class with max probability idxs = np.argmax(all_preds, axis=1) # get the values of the highest probability for each image preds = [all_preds[i, idxs[i]] for i in range(len(idxs))] # get the label of the class with the highest probability for each image classes = [self.classes[idx] for idx in idxs] return np.array(preds), idxs, classes def ConvBlock(self, layers, filters): """ Adds a specified number of ZeroPadding and Covolution layers to the model, and a MaxPooling layer at the very end. Args: layers (int): The number of zero padded convolution layers to be added to the model. filters (int): The number of convolution filters to be created for each layer. """ model = self.model for i in range(layers): model.add(ZeroPadding2D((1, 1))) # model.add(Convolution2D(filters, 3, 3, activation='relu')) model.add(Conv2D(filters, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) def FCBlock(self): """ Adds a fully connected layer of 4096 neurons to the model with a Dropout of 0.5 Args: None Returns: None """ model = self.model model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) def create(self): """ Creates the VGG16 network achitecture and loads the pretrained weights. Args: None Returns: None """ model = self.model = Sequential() model.add(Lambda(vgg_preprocess, input_shape=(3,224,224), output_shape=(3,224,224))) self.ConvBlock(2, 64) self.ConvBlock(2, 128) self.ConvBlock(3, 256) self.ConvBlock(3, 512) self.ConvBlock(3, 512) model.add(Flatten()) self.FCBlock() self.FCBlock() model.add(Dense(1000, activation='softmax')) fname = 'vgg16.h5' model.load_weights(get_file(fname, self.FILE_PATH+fname, cache_subdir='models')) def get_batches(self, path, gen=image.ImageDataGenerator(), shuffle=True, batch_size=8, class_mode='categorical'): """ Takes the path to a directory, and generates batches of augmented/normalized data. Yields batches indefinitely, in an infinite loop. See Keras documentation: https://keras.io/preprocessing/image/ """ return gen.flow_from_directory(path, target_size=(224,224), class_mode=class_mode, shuffle=shuffle, batch_size=batch_size) def ft(self, num): """ Replace the last layer of the model with a Dense (fully connected) layer of num neurons. Will also lock the weights of all layers except the new layer so that we only learn weights for the last layer in subsequent training. Args: num (int) : Number of neurons in the Dense layer Returns: None """ model = self.model model.pop() for layer in model.layers: layer.trainable=False model.add(Dense(num, activation='softmax')) self.compile() def finetune(self, batches): self.ft(batches.num_classes) classes = list(iter(batches.class_indices)) # get a list of all the class labels # batches.class_indices is a dict with the class name as key and an index as value # eg. {'cats': 0, 'dogs': 1} # sort the class labels by index according to batches.class_indices and update model.classes for c in batches.class_indices: classes[batches.class_indices[c]] = c self.classes = classes def compile(self, lr=0.001): """ Configures the model for training. See Keras documentation: https://keras.io/models/model/ """ self.model.compile(optimizer=Adam(lr=lr), loss='categorical_crossentropy', metrics=['accuracy']) def fit_data(self, trn, labels, val, val_labels, nb_epoch=1, batch_size=64): """ Trains the model for a fixed number of epochs (iterations on a dataset). See Keras documentation: https://keras.io/models/model/ """ #self.model.fit(trn, labels, nb_epoch=nb_epoch, # validation_data=(val, val_labels), batch_size=batch_size) self.model.fit(trn, labels, epochs=nb_epoch, validation_data=(val, val_labels), batch_size=batch_size) #def fit(self, batches, val_batches, nb_epoch=1): def fit(self, batches, val_batches, batch_size, nb_epoch=1): """ Fits the model on data yielded batch-by-batch by a Python generator. See Keras documentation: https://keras.io/models/model/ """ #self.model.fit_generator(batches, samples_per_epoch=batches.nb_sample, nb_epoch=nb_epoch, # validation_data=val_batches, nb_val_samples=val_batches.nb_sample) self.model.fit_generator(batches, steps_per_epoch=int(np.ceil(batches.samples/batch_size)), epochs=nb_epoch, validation_data=val_batches, validation_steps=int(np.ceil(val_batches.samples/batch_size))) def test(self, path, batch_size=8): """ Predicts the classes using the trained model on data yielded batch-by-batch. Args: path (string): Path to the target directory. It should contain one subdirectory per class. batch_size (int): The number of images to be considered in each batch. Returns: test_batches, numpy array(s) of predictions for the test_batches. """ test_batches = self.get_batches(path, shuffle=False, batch_size=batch_size, class_mode=None) #return test_batches, self.model.predict_generator(test_batches, test_batches.nb_sample) return test_batches, self.model.predict_generator(test_batches, int(np.ceil(test_batches.samples/batch_size)))