【Python排序搜索基本算法】之深度优先搜索、广度优先搜索、拓扑排序、强联通&Kosaraju算法

Graph Search and Connectivity


    Generic Graph Search

    Goals 1. find everything findable

              2. don't explore anything twice

    Generic Algorithm (given graph G, vertex S)

               --- initialize S explored (all others unexplored)

               --- while possible:

                      --- choose an edge(u, v) with u explored and v unexplored

                      --- mark v explored


     1. Breadth-First Search (BFS)     O(m+n) time using a queue

        --- explore nodes in 'layers'

        --- can compute shortest paths

        --- can compute connected components of an undirected graph

       

        The basics:pseudocode

        BFS(Graph G, start vertex s)

            (all nodes initially unexplored)

            mark s as explored

            let Q = queue data structure(FIFO), initialized with s

            while Q != 0:

                remove the first node of Q, call it v

                for each edge(v, w):

                    if w unexplored

                        mark w as explored

                        add into Q (at the end)


          Shortest Paths:

          Goal: compute dist(v), the fewest # of edges on a path from s to v

          Extra code: 

              initialize dist(v) = 0 if v == s 

              when considering edge(v, w):

                  if w unexplored then set dist(w) = dist(v) + 1

          claim: at termination, dist(v) = i  <=>  v in ith layer


          Undirected Connectivity

              let G = (V, E) be an undirected graph

              Connected components == the 'pieces' of G

              Goal: compute all connected components(why? check if network is disconnected, graph visualization, clustering, similarity)

                  all nodes unexplored

                  (assume labelled 1 to n)

                  for i = 1 to n

                      if i not yet explored

                          BFS(G, i)      //discovers precisely i's connected components


    2. Depth-First Search (DFS)       O(m+n) time using a stack

        --- explore aggressively like a maze, backtrack only when necessary

        --- compute topological ordering of directed acycle graph(DAG)

        --- compute connected components in directed graphs

        

        pseudocode:

        use a stack instead of a queue

        recursive version: 

            DFS(Graph G, start vertex s)

                mark s as explored

                for every edge(s,v)

                    if v unexplored

                       DFS(G,v)

        

        Application: Topological Sort   (DAG)

        Definition: A topological ordering of a directed graph G is a labelling f of G's node's such that:

                       1. the f(v)'s are the set{1,2,...,n}

                       2. (u,v)  => f(u) < f(v)

        note that if G has directed cycle => no topological ordering


        Straightforward solution to Topological Sort

        note: every directed acyclic graph has a sink vertex(入度为0的node,无前驱)

        To compute topological ordering:

            let v be a sink vertex of G

            set f(v) = n

            recurse on G - {v}

            (1) 从有向图中选一个没有前驱的顶点

            (2) 从图中删去该点,并删去从该点出发的所有边

            (3) 重复上两步,直到图中再没有有前驱的点为止


        Topological Sort via DFS

        DFS(G, s)

            mark s explored

            for every edge(s, v)

                if v not yet explored

                    DFS(G, v)

             set f(s) = current_label

             current_label --

        DFS-loop(Graph G)

            mark all node unexplored

            current_label = n

            for each vertex v:

                if v unexplored

                    DFS(G, v)

         



          3. Computing Strong Components: The Algorithm

                Strongly connected Components

                Formal Definition: the strongly connected Components(SCCs) of a directed graph G are the equivalance classes of the relation:

                           u~v <=> u ->v and v -> u in G

               

                               

               Kosaraju's Two-Pass Algorithm   2*DFS = O(m+n) 

               1. let Gr = G with all arcs reversed

               2. run DFS-loop on Gr       <---------- Goal: compute 'magical ordering' of nodes

                        let f(v) = 'finishing time' of each v 

               3. run DFS-loop on G        <---------- Goal: discover the SCCs one-by-one 

                   processing nodes in decreasing order of finishing times

                   SCCs = nodes with the same 'leader'

            

               pseudocode:

               DFS(G, i)

                   make i as explored 

                   set leader(i) = node s

                   for each arc(i, j):

                       if j not yet explored:

                           DFS(G, j)

                  t++

                  set f(i) = t      // i's finishing time


              DFS-loop(Graph G)

                  global variable t = 0    // # of nodes pressed so far (for finishing times in 1st pass)             

                  global variable s = Null  // current source vertex  (for leaders in 2nd pass)

                  Assume nodes labelled 1 to n

                  for i = n down to 1

                  if i not yet explored 

                      s = i

                      DFS(G, i)






Python Code:


 

import sys
import threading
import copy

threading.stack_size(67108864)
sys.setrecursionlimit(300000)

def DFS(edges, i, index):
    global t, vertices, new_vertices, s, compare
    if index == 1:   # 1st pass
        vertices[i-1][1] = True   # mark it explored
    if index == 2:    # 2nd pass
        vertices[compare[i]-1][1] = True
        vertices[compare[i]-1].append(s)   # set leader(i) = node s
    if i in edges:
        for v in edges[i]:
            if index == 1:
                if vertices[v-1][1] == False:
                    DFS(edges, vertices[v-1][0], index)
            if index == 2:
                if vertices[compare[v]-1][1] == False:
                    DFS(edges, vertices[compare[v]-1][0], index)
                    
    if index == 1:
        t = t + 1    # i's finishing time
        vertices[i-1].append(t)
        temp = vertices[i-1].copy()
        temp[1] = False
        new_vertices.append(temp)
        compare[vertices[i-1][0]] = t
        
def DFS_loop(edges, index):
    global t, vertices, new_vertices, s
    t = 0  #for finishing times in 1st pass
    n = len(vertices)
    for i in range(1, n+1):
        v = vertices[n-i]
        if v[1] == False:
            s = v[0]
            DFS(edges, v[0], index)

def main():       
    global vertices, new_vertices, compare
    f = open('SCC.txt')
    _f = list(f)
    vertices = list()    #[number, False]  false indicates unexplored
    new_vertices = list() #[number, False, t, s]
    edges = dict()       # {1:[2,5,6...]...}
    edges_rev = dict()   # {2:[8,9,5...]...}
    compare = dict()
    for i in range(0, 875714):  #875714  initialize V
        vertices.append([i+1, False])
    for edge in _f:   # initialize E
        temp = edge.split()
        edge_temp = [int(temp[0]), int(temp[1])]
        edge_rev_temp = [edge_temp[1], edge_temp[0]]
        if edge_temp[0] not in edges: 
            edges[edge_temp[0]] = [edge_temp[1]]
        else: 
            edges[edge_temp[0]].append(edge_temp[1])
        if edge_rev_temp[0] not in edges_rev: 
            edges_rev[edge_rev_temp[0]] = [edge_rev_temp[1]]
        else:
            edges_rev[edge_rev_temp[0]].append(edge_rev_temp[1])

    DFS_loop(edges_rev, 1)   
    vertices = copy.deepcopy(new_vertices)
    DFS_loop(edges, 2)

    result = dict()
    for item in vertices:  # nodes with the same 'leader'
        if item[3] not in result:
            result[item[3]] = 1
        else:
            result[item[3]] = result[item[3]] + 1

    r = list()   #output the sizes of the 10 largest SCCs
    for key in result:
        r.append(result[key])
    r = sorted(r, reverse = True)
    print(r[0:9])



if __name__ == '__main__':
    thread = threading.Thread(target = main)
    thread. start()
   


 






 

posted @ 2013-08-10 00:01  javawebsoa  Views(2466)  Comments(0Edit  收藏  举报