poj1556
计算几何+最短路
最短路是套的模版。。= =
毕竟不是自己写的。。模版上的点竟然是从0开始的。
难在建图。图中,比如2和12点,其间如果没有任何线段阻挡,那么边权是他们的直线距离,如果有线段阻挡,边权是inf。
枚举每两个点,用其组成的线段与其他所有线段判断,如果相交则边权inf,如果不相交距离是其直线距离。
#include <iostream> #include <math.h> #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x))<eps) #define pi acos(-1.0) struct point { double x, y; }; struct line { point a, b; }; //计算cross product (P1-P0)x(P2-P0) double xmult(point p1, point p2, point p0) { return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y); } //两点距离 double distance(point p1, point p2) { return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y)); } //判三点共线 bool dots_inline(point p1, point p2, point p3) { return zero(xmult(p1, p2, p3)); } //判点是否在线段上,包括端点 bool dot_online_in(point p, line l) { return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps; } //判点是否在线段上,不包括端点 bool dot_online_ex(point p, line l) { return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y)); } //判两点在线段同侧,点在线段上返回0 bool same_side(point p1, point p2, line l) { return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps; } //判两点在线段异侧,点在线段上返回0 bool opposite_side(point p1, point p2, line l) { return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps; } //判两直线平行 bool parallel(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y)); } //判两直线垂直 bool perpendicular(line u, line v) { return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y)); } //判两线段相交,包括端点和部分重合 bool intersect_in(line u, line v) { if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b)) return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u); return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u); } bool intersect_ex(line u, line v) { return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u); } //单源最短路径,bellman_ford算法,邻接阵形式,复杂度O(n^3) //求出源s到所有点的最短路经,传入图的大小n和邻接阵mat //返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1 //可更改路权类型,路权可为负,若图包含负环则求解失败,返回0 //优化:先删去负边使用dijkstra求出上界,加速迭代过程 #define MAXN 200 #define inf 1000000000 typedef double elem_t; int bellman_ford(int n, elem_t mat [][MAXN], int s, elem_t* min, int* pre){ int v[MAXN], i, j, k, tag; for (i = 0; i < n; i++) min[i] = inf, v[i] = 0, pre[i] = -1; for (min[s] = 0, j = 0; j < n; j++){ for (k = -1, i = 0; i < n; i++) if (!v[i] && (k == -1 || min[i] < min[k])) k = i; for (v[k] = 1, i = 0; i < n; i++) if (!v[i] && mat[k][i] >= 0 && min[k] + mat[k][i] < min[i]) min[i] = min[k] + mat[pre[i] = k][i]; } for (tag = 1, j = 0; tag && j <= n; j++) for (tag = i = 0; i < n; i++) for (k = 0; k < n; k++) if (min[k] + mat[k][i] < min[i]) min[i] = min[k] + mat[pre[i] = k][i], tag = 1; return j <= n; } int main() { line l[100]; point p[200]; int n; while (std::cin >> n && (n != -1)) { int j = -1; int k = 0; p[0].x = 0.0, p[0].y = 5.0; for (int i = 0; i < n; i++) { double a, b, c, d, e; std::cin >> a >> b >> c >> d >> e; l[++j].a.x = a, l[j].a.y = 0.0; l[j].b.x = a, l[j].b.y = b; l[++j].a.x = a, l[j].a.y = c; l[j].b.x = a, l[j].b.y = d; l[++j].a.x = a, l[j].a.y = e; l[j].b.x = a, l[j].b.y = 10.0; p[++k].x = a, p[k].y = 0.0; p[++k].x = a, p[k].y = b; p[++k].x = a, p[k].y = c; p[++k].x = a, p[k].y = d; p[++k].x = a, p[k].y = e; p[++k].x = a, p[k].y = 10.0; } p[++k].x = 10.0, p[k].y = 5.0; /*for (int i = 0; i <= j; i++) { std::cout << l[i].a.x << ' ' << l[i].a.y << " to " << l[i].b.x << ' ' << l[i].b.y << std::endl; } for (int i = 1; i <= k; i++) { std::cout << i << ' '<<p[i].x << ' ' << p[i].y << std::endl; }*/ double mat[MAXN][MAXN]; for (int a = 0; a <= k; a++) { for (int b = 0; b <= k; b++) { line temp; temp.a = p[a], temp.b = p[b]; bool flag = false; for (int c = 1; c <= j; c++) { if (intersect_ex(temp, l[c])) { mat[a][b] = inf; flag = true; break; } } if (!flag) { mat[a][b] = distance(p[a], p[b]); } } } /* for (int a = 0; a <= k; a++) { for (int b = 0; b <= k; b++) { std::cout << a << ' ' << b << ' ' << mat[a][b] << '\n'; } } std::cout << k << std::endl;*/ elem_t min[MAXN]; int pre[MAXN]; bellman_ford(k+1, mat, 0, min, pre); /*for (int i = 0; i <= k; i++) { std::cout << ' ' << min[i] << "\n"; }*/ printf("%.2lf\n", min[k]); } }