第39月第3日 opencv Haar Cascade人脸检测 1秒n帧
1.
import cv2 import sys img=cv2.imread('2.jpg') #加载分类器 face_haar=cv2.CascadeClassifier("data/haarcascades/haarcascade_frontalface_default.xml") eye_haar=cv2.CascadeClassifier("data/haarcascades/haarcascade_eye.xml") #把图像转为黑白图像 gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #检测图像中所有的脸 faces=face_haar.detectMultiScale(gray_img,1.3,5) print(faces) for face_x,face_y,face_w,face_h in faces: cv2.rectangle(img, (face_x, face_y), (face_x+face_w, face_y+face_h), (0,255,0), 2) # 眼长在脸上 roi_gray_img=gray_img[face_y:face_y+face_h,face_x:face_x+face_w] roi_img=img[face_y:face_y+face_h,face_x:face_x+face_w] eyes=eye_haar.detectMultiScale(roi_gray_img,1.3,5) for eye_x,eye_y,eye_w,eye_h in eyes: cv2.rectangle(roi_img, (eye_x,eye_y), (eye_x+eye_w, eye_y+eye_h), (255,0,0), 2) cv2.imshow('img', img) cv2.waitKey(0) cv2.destroyAllWindows()
https://blog.csdn.net/eereere/article/details/79582988
https://zhuanlan.zhihu.com/p/63154631
2.
-(void)processImage:(cv::Mat &)image { if( GetTickCount()-self.dwLastCaptureTime < 1000/frame) return; self.dwLastCaptureTime = GetTickCount(); long GetTickCount() { struct timeval tv; if(gettimeofday(&tv, 0)) return 0; return (tv.tv_sec * 1000) + (tv.tv_usec / 1000); }