超详细的Ribbon源码解析

Ribbon简介

什么是Ribbon?

Ribbon是springcloud下的客户端负载均衡器,消费者在通过服务别名调用服务时,需要通过Ribbon做负载均衡获取实际的服务调用地址,然后通过httpclient的方式进行本地RPC远程调用。

Ribbon原理

Ribbon负载均衡算法主要是轮询算法,分为以下几步:

  1. 根据服务别名,从eureka获取服务提供者的列表
  2. 将列表缓存到本地
  3. 根据具体策略获取服务提供者

Ribbon的核心是负载均衡管理,另还有5个大功能点。如下图:

源码分析

事前准备

  1. 先搭建一个SpringCloud的项目,也可以从我的github上下载。地址:https://github.com/mmcLine/spring-cloud-study

  2. 拷贝以下代码

@Configuration
public class RestTemplateConfiguration {
    @Bean
    @LoadBalanced
    public RestTemplate getRestTemplate(){
        return  new RestTemplate();
    }
}
 @Autowired
    private RestTemplate restTemplate;

    @GetMapping("/testRibbon/{id}")
    public User getTodayStatistic(@PathVariable("id") Integer id){
        String url  ="http://STUDY-USER/user/getUserById?id="+id;
        return restTemplate.getForObject(url, User.class);
    }

代码都准备好了,可以开始分析了。

  1. 执行调用

http://localhost:8005/trade/testRibbon/2

为什么这么就能调用到服务提供者的方法?

打断点,可以看到restTemplate里有两个拦截器,根据名字可以推断RetryLoadBalancerInterceptor是关键。

跟踪到RetryLoadBalancerInterceptor类

@Override
	public ClientHttpResponse intercept(final HttpRequest request, final byte[] body,
										final ClientHttpRequestExecution execution) throws IOException {
		final URI originalUri = request.getURI();
		//获取到service的name
		final String serviceName = originalUri.getHost();
		Assert.state(serviceName != null, "Request URI does not contain a valid hostname: " + originalUri);
		//根据serviceName和LoadBalancerClient,LoadBalancedRetryPolicy里面包含了RibbonLoadBalancerContext和ServiceInstanceChooser
		final LoadBalancedRetryPolicy retryPolicy = lbRetryFactory.createRetryPolicy(serviceName,
				loadBalancer);
		RetryTemplate template = createRetryTemplate(serviceName, request, retryPolicy);
		//执行方法会进入到doExecute方法
		return template.execute(context -> {
			ServiceInstance serviceInstance = null;
			if (context instanceof LoadBalancedRetryContext) {
				LoadBalancedRetryContext lbContext = (LoadBalancedRetryContext) context;
				serviceInstance = lbContext.getServiceInstance();
			}
			if (serviceInstance == null) {
				serviceInstance = loadBalancer.choose(serviceName);
			}
			ClientHttpResponse response = RetryLoadBalancerInterceptor.this.loadBalancer.execute(
					serviceName, serviceInstance,
					requestFactory.createRequest(request, body, execution));
			int statusCode = response.getRawStatusCode();
			if (retryPolicy != null && retryPolicy.retryableStatusCode(statusCode)) {
				byte[] bodyCopy = StreamUtils.copyToByteArray(response.getBody());
				response.close();
				throw new ClientHttpResponseStatusCodeException(serviceName, response, bodyCopy);
			}
			return response;
		}, new LoadBalancedRecoveryCallback<ClientHttpResponse, ClientHttpResponse>() {
			//This is a special case, where both parameters to LoadBalancedRecoveryCallback are
			//the same.  In most cases they would be different.
			@Override
			protected ClientHttpResponse createResponse(ClientHttpResponse response, URI uri) {
				return response;
			}
		});
	}

doExecute方法:

protected <T, E extends Throwable> T doExecute(RetryCallback<T, E> retryCallback,
			RecoveryCallback<T> recoveryCallback, RetryState state)
			throws E, ExhaustedRetryException {
        //省略部分代码

			/*
			 * We allow the whole loop to be skipped if the policy or context already
			 * forbid the first try. This is used in the case of external retry to allow a
			 * recovery in handleRetryExhausted without the callback processing (which
			 * would throw an exception).
			 */
			 //执行逻辑的关键方法
			while (canRetry(retryPolicy, context) && !context.isExhaustedOnly()) {

				}

继续跟踪canRetry方法

  @Override
    public boolean canRetry(RetryContext context) {
        LoadBalancedRetryContext lbContext = (LoadBalancedRetryContext)context;
        if(lbContext.getRetryCount() == 0  && lbContext.getServiceInstance() == null) {
            //We haven't even tried to make the request yet so return true so we do
            //设置选中的服务提供者
            lbContext.setServiceInstance(serviceInstanceChooser.choose(serviceName));
            return true;
        }
        return policy.canRetryNextServer(lbContext);
    }

我们跟踪serviceInstanceChooser.choose(serviceName)看看怎么通过serviceName选服务提供者的。

@Override
	public ServiceInstance choose(String serviceId) {
	    //选择server
		Server server = getServer(serviceId);
		if (server == null) {
			return null;
		}
		return new RibbonServer(serviceId, server, isSecure(server, serviceId),
				serverIntrospector(serviceId).getMetadata(server));
	}

跟踪getServer方法

protected Server getServer(ILoadBalancer loadBalancer) {
		if (loadBalancer == null) {
			return null;
		}
		//可以看出是loadBalancer在选择
		return loadBalancer.chooseServer("default"); // TODO: better handling of key
	}

继续深入

 public Server chooseServer(Object key) {
        if (counter == null) {
            counter = createCounter();
        }
        //有一个调用次数在+1
        counter.increment();
        if (rule == null) {
            return null;
        } else {
            try {
                //委托给了IRule,所以Irule是负载均衡的关键,最后来总结
                return rule.choose(key);
            } catch (Exception e) {
                logger.warn("LoadBalancer [{}]:  Error choosing server for key {}", name, key, e);
                return null;
            }
        }
    }

查看Irule的实现

 public Server choose(Object key) {
        ILoadBalancer lb = getLoadBalancer();
        //lb.getAllServers里面是所有的服务提供者列表
        Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
        if (server.isPresent()) {
            return server.get();
        } else {
            return null;
        }       
    }

跟踪chooseRoundRobinAfterFiltering方法

public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
        //拿到筛选后的servers
        List<Server> eligible = getEligibleServers(servers, loadBalancerKey);
        if (eligible.size() == 0) {
            return Optional.absent();
        }
        //incrementAndGetModulo方法拿到下标,然后根据list.get取到一个服务
        return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
    }

至此就拿到了具体的服务提供者。

但是到这里还有个问题?

  1. 怎么根据服务名拿到server的?

有一个ServerList接口是用于拿到服务列表的。我们使用的loadBalancer(ZoneAwareLoadBalancer)的父类DynamicServerListLoadBalancer类的构造方法里,有一个restOfinit方法

public DynamicServerListLoadBalancer(IClientConfig clientConfig, IRule rule, IPing ping,
                                         ServerList<T> serverList, ServerListFilter<T> filter,
                                         ServerListUpdater serverListUpdater) {
        super(clientConfig, rule, ping);
        this.serverListImpl = serverList;
        this.filter = filter;
        this.serverListUpdater = serverListUpdater;
        if (filter instanceof AbstractServerListFilter) {
            ((AbstractServerListFilter) filter).setLoadBalancerStats(getLoadBalancerStats());
        }
        restOfInit(clientConfig);
    }

跟踪restOfInit方法

void restOfInit(IClientConfig clientConfig) {
        boolean primeConnection = this.isEnablePrimingConnections();
        // turn this off to avoid duplicated asynchronous priming done in BaseLoadBalancer.setServerList()
        this.setEnablePrimingConnections(false);
        enableAndInitLearnNewServersFeature();
        
        //用于获取所有的serverList
        updateListOfServers();
        if (primeConnection && this.getPrimeConnections() != null) {
            this.getPrimeConnections()
                    .primeConnections(getReachableServers());
        }
        this.setEnablePrimingConnections(primeConnection);
        LOGGER.info("DynamicServerListLoadBalancer for client {} initialized: {}", clientConfig.getClientName(), this.toString());
    }

继续跟踪updateListOfServers方法

 public void updateListOfServers() {
        List<T> servers = new ArrayList<T>();
        if (serverListImpl != null) {
            //查询serverList
            servers = serverListImpl.getUpdatedListOfServers();
            LOGGER.debug("List of Servers for {} obtained from Discovery client: {}",
                    getIdentifier(), servers);

            if (filter != null) {
                servers = filter.getFilteredListOfServers(servers);
                LOGGER.debug("Filtered List of Servers for {} obtained from Discovery client: {}",
                        getIdentifier(), servers);
            }
        }
        updateAllServerList(servers);
    }

继续跟踪源码到obtainServersViaDiscovery方法,

private List<DiscoveryEnabledServer> obtainServersViaDiscovery() {
        List<DiscoveryEnabledServer> serverList = new ArrayList<DiscoveryEnabledServer>();
    //eurekaClientProvider.get()会去获取EurekaClient
        if (eurekaClientProvider == null || eurekaClientProvider.get() == null) {
            logger.warn("EurekaClient has not been initialized yet, returning an empty list");
            return new ArrayList<DiscoveryEnabledServer>();
        }

        EurekaClient eurekaClient = eurekaClientProvider.get();
        //vipAddresses就是serviceName
        if (vipAddresses!=null){
            for (String vipAddress : vipAddresses.split(",")) {
                // if targetRegion is null, it will be interpreted as the same region of client
                //此处获取到服务的信息
                List<InstanceInfo> listOfInstanceInfo = eurekaClient.getInstancesByVipAddress(vipAddress, isSecure, targetRegion);
                for (InstanceInfo ii : listOfInstanceInfo) {
                    if (ii.getStatus().equals(InstanceStatus.UP)) {

                        if(shouldUseOverridePort){
                            if(logger.isDebugEnabled()){
                                logger.debug("Overriding port on client name: " + clientName + " to " + overridePort);
                            }

                            // copy is necessary since the InstanceInfo builder just uses the original reference,
                            // and we don't want to corrupt the global eureka copy of the object which may be
                            // used by other clients in our system
                            InstanceInfo copy = new InstanceInfo(ii);

                            if(isSecure){
                                ii = new InstanceInfo.Builder(copy).setSecurePort(overridePort).build();
                            }else{
                                ii = new InstanceInfo.Builder(copy).setPort(overridePort).build();
                            }
                        }

                        DiscoveryEnabledServer des = new DiscoveryEnabledServer(ii, isSecure, shouldUseIpAddr);
                        des.setZone(DiscoveryClient.getZone(ii));
                        serverList.add(des);
                    }
                }
                if (serverList.size()>0 && prioritizeVipAddressBasedServers){
                    break; // if the current vipAddress has servers, we dont use subsequent vipAddress based servers
                }
            }
        }
        return serverList;
    }

综合上面可以看出,最终是通过eurekaClient去拿到服务列表的。

那么如果服务列表发生变化怎么刷新呢?

是通过CacheRefreshThread在定时线程池里面执行,核心拉取方法是fetchRegistry

Iping

Iping是用于探测服务列表中的服务是否正常,如果不正常,则从eureka拉取服务列表并更新。

在BaseLoadBalancer里面有一个setupPingTask方法,启动定时任务,30秒一次定时向EurekaClient发送“ping”

public BaseLoadBalancer(String name, IRule rule, LoadBalancerStats stats,
            IPing ping, IPingStrategy pingStrategy) {
	
        logger.debug("LoadBalancer [{}]:  initialized", name);
        
        this.name = name;
        this.ping = ping;
        this.pingStrategy = pingStrategy;
        setRule(rule);
        setupPingTask();
        lbStats = stats;
        init();
    }

Iping的具体逻辑在PingTask类里。

Irule总结:

Irule是负载均衡的规则:

我这里默认是使用的是ZoneAvoidanceRule,还有很多种策略:

  • RandomRule: 随机
  • RoundRobinRule: 轮询
  • RetryRule: 先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重试,获取可用的服务
  • WeightedResponseTimeRule: 对RoundRobinRule的扩展,响应速度越快的实例选择权重越大,越容易被选择
  • BestAvailableRule:会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
  • AvailabilityFilteringRule:先过滤掉故障实例,再选择并发较小的实例
  • ZoneAvoidanceRule:默认规则,复合判断server所在区域的性能和server的可用性选择服务器

properties配置方式如下:
STUDY-USER是服务名

STUDY-USER.ribbon.NFLoadBalancerRuleClassName=com.netflix.loadbalancer.RoundRobinRule

posted @ 2021-10-18 14:45  女友在高考  阅读(920)  评论(1编辑  收藏  举报