随笔分类 - 图像处理/OpenCV
摘要:以前总是不知道为什么,从摄像头录入的视频帧,显示在窗口上很正常,但是用来进行数据计算时总要先垂直翻转一下。为此,在涉及图像中坐标的计算中,出过不少错。 现在终于明白了,OpenCV中的图像结构有个很重要的成员origin,它指明了图像的原点位置,可以有两种取值:IPL_ORIGIN_TL和IPL_ORIGIN_BL,其中TL意思是:TopLeft,即左上;BL意思是:BottomLeft,即左下。其实这两个都是整形常量,IPL_ORIGIN_TL就是0,IPL_ORIGIN_BL就是1。 经验证,从摄像头取回的图像的坐标原点是在左下角,即origin值是1。所以在计算前,一定要明确图像的坐标.
阅读全文
摘要:运动检测的一般方法 目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的单分布高斯背景模型单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图.
阅读全文
摘要:(1)首先要保证OpenCV的头文件已包含进程序,并且已在工程中正确lib等文件目录。(2)添加一个picture控件(3)在对话框初始化函数(或者某按钮响应函数)中 CWnd* pwnd = GetDlgItem(图片控件的ID);//由控件ID获得控件句柄 CDC* pDC = pwnd->GetDC();//再由控件句柄获得显示控件的DC HDC hDC = pDC->GetSafeHdc();//由控件的DC获取 HDC(DC的句柄)来进行绘图操作 CRect rect; pwnd->GetClientRect(&rect); //初始化rect结构得到地物控
阅读全文
摘要:YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于PAL),是PAL和SECAM模拟彩色电视制式采用的颜色空间。其中的Y,U,V几个字母不是英文单词的组合词,Y表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“U”和“V”是构成彩色的两个分量。采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V是分离的。如果只有 Y信号分量而没有U、V信号分量,那么这样表示的图像就是黑白灰度图像。彩色电视采用YUV空间正是为了用亮度信号Y解决彩色电视机与
阅读全文
摘要:H参数表示色彩信息,即所处的光谱颜色的位置。该参数用一角度量来表示,红、绿、蓝分别相隔120度。互补色分别相差180度。纯度S为一比例值,范围从0到1,它表示成所选颜色的纯度和该颜色最大的纯度之间的比率。S=0时,只有灰度。V表示色彩的明亮程度,范围从0到1。有一点要注意:它和光强度之间并没有直接的联系。RGB转化到HSV的算法:max=max(R,G,B) min=min(R,G,B) if R = max, H = (G-B)/(max-min) if G = max, H = 2 + (B-R)/(max-min) if B = max, H = 4 + (R-G)/(max-min)
阅读全文
摘要:冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换使我们能通过频率成分来分析一个函数。图像傅立叶变换的物理意义图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际
阅读全文
摘要:傅立叶变换在图像处理中非常的有用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。印象中,傅立叶变换在图像处理以下几个话题都有重要作用:1.图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频——噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;2.图像分割之边缘检测提取图像高频分量3.图像特征提取:形状特征:傅里叶描述纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性4.图像压缩可以直接通过傅里叶系数来压缩数据
阅读全文