JAVA中ReentrantLock详解

前言:本文解决的问题

  • RentrantLock与Synchronized区别
  • ReentrantLock特征
  • ReentrantLock类的方法介绍

1.什么是ReentrantLock

1.1ReentrantLock 与Synchronized区别

在面试中询问ReentrantLock与Synchronized区别时,一般回答都是

ReentrantLock

  • ReentrantLock是JDK方法,需要手动声明上锁和释放锁,因此语法相对复杂些;如果忘记释放锁容易导致死锁
  • ReentrantLock具有更好的细粒度,可以在ReentrantLock里面设置内部Condititon类,可以实现分组唤醒需要唤醒的线程
  • RenentrantLock能实现公平锁

Synchronized

  • Synchoronized语法上简洁方便
  • Synchoronized是JVM方法,由编辑器保证枷锁和释放

1.2ReentrantLock特征介绍

JAVA的java.util.concurrent框架中提供了ReentrantLock类(于JAVA SE 5.0时引入),ReentrantLock实现了lock接口,具体在JDK中的定义如下:

public class ReentrantLock implements Lock, java.io.Serializable {

 public ReentrantLock() {
        sync = new NonfairSync();
    }

    /**
     * Creates an instance of {@code ReentrantLock} with the
     * given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

}

看到一个类首先就需要知道它的构造方法有哪些,ReentrantLock有两个构造方法,一个是无参的 ReentrantLock() ;另一个含有布尔参数public ReentrantLock(boolean fair)。后面一个构造函数说明ReentrantLock可以新建公平锁;而Synchronized只能建立非公平锁

那么Lock接口有哪些方法
lock
Lock接口中有lock和unlock方法,还有newCondition() 方法,这就是上面说的ReentrantLock里面设置内部Condititon类。由于ReentrantLock实现了Lock接口,因此它必须实现该方法,具体如下:

  public Condition newCondition() {
        return sync.newCondition();
    }

返回Condition类的一个实例。

2 ReentrantLock其它方法介绍

在介绍它的其它方法前,要先明白它的使用方法,以下JDK中的建议:

 class X {
     private final ReentrantLock lock = new ReentrantLock();
      // ...
  
      public void m() {
       lock.lock();  // block until condition holds
       try {
        // ... method body
        } finally {
        lock.unlock()
      }
    }

建议用try,在finally里面一定要释放锁,防止被中断时锁没释放,造成死锁

lock()

 public void lock() {
        sync.lock();
    }

如果该锁没被其它线程获得,则立即返回;并且把 lock hold count的值变位1.

unlock()

 public void unlock() {
        sync.release(1);
    }

如果当前线程是该锁的持有者,则保持计数递减。 如果保持计数现在为零,则锁定被释放。 如果当前线程不是该锁的持有者,则抛出IllegalMonitorStateException 。

isFair()

public final boolean isFair() {
        return sync instanceof FairSync;
    }

判断该锁是不是公平锁

newCondition()

 public Condition newCondition() {
        return sync.newCondition();
    }

返回新的ConditionObject对象。

Condition接口中的方法

  • await(): void await() throws InterruptedException;
    Condition接口中的方法,导致当前线程等到发信号。

  • siginal()

 /**
         * Moves the longest-waiting thread, if one exists, from the
         * wait queue for this condition to the wait queue for the
         * owning lock.
         *
         * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}
         */
        public final void signal() {
            if (!isHeldExclusively())
                throw new IllegalMonitorStateException();
            Node first = firstWaiter;
            if (first != null)
                doSignal(first);
        }

唤醒一个等待该条件的线程去获得锁(第一个)。

  • signalAll():唤醒所有等待线程。

3 ReentrantLock完整实例介绍

package chapter10.reentrantlock;

import java.util.Arrays;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/*模拟转账,把钱从一个账户转到另一个账户
 * */
public class ReentrantLockUse {
	public static final int NACCOUNTS = 100;
	public static final double INITIAL_BALANCE = 1000;
	public static final double MAX_AMOUNT = 1000;
	public static final int DELAY = 10;

	
	public static void main(String[] args) {
		Bank bank = new Bank(NACCOUNTS,INITIAL_BALANCE);
		for(int i = 0 ; i < NACCOUNTS ; i++) {
			int fromAccount = i ;
			Runnable r = () ->{//lambda表达式
				try {
					while(true) {
						int toAccount  = (int) (bank.size()*Math.random());
						double amount = MAX_AMOUNT * Math.random();
						bank.transfer(fromAccount, toAccount, amount);
						Thread.sleep((int)(DELAY*Math.random()));
					}
				}
				catch(InterruptedException e) {
					
				}
			};
			Thread t = new Thread(r);//新建线程
			t.start();
		}

	}

}

class Bank{
	private final double[] account;//账户
	private Lock bankLock ;     //重复锁
	private Condition sufficientFunds;	//条件对象
	
	
	
	public Bank(int n, double initialBalance) {
		account = new double[n];		
		Arrays.fill(account, initialBalance);
		bankLock = new ReentrantLock();  //构造对象时,实例化锁
		sufficientFunds = bankLock.newCondition();//新建条件对象
	}
	/*转账,把from账户里面的钱转到to里面,金额是amount*/
	public void transfer(int from , int to,double amount) {
		
		bankLock.lock();
		try {
			while(account[from] < amount) {  
				sufficientFunds.await();
			}
			System.out.println(Thread.currentThread());
			account[from] -=amount;
			System.out.printf("%10.2f from %d to %d ",amount,from,to);
			account[to] +=amount;
			System.out.printf(" Total Balance : %10.2f%n", getTotalBalance());
			sufficientFunds.signalAll();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		finally {
			bankLock.unlock();
		}
	}
	/*做的所有账户总额*/
	public double getTotalBalance() {
		bankLock.lock();
		try {
			 double sum = 0;
			 for(double a : account) {
				 sum +=a;
			 }
			 return sum;
		}
		finally {
			bankLock.unlock();
		}
	}
	
	public int size() {
		return account.length;
	}
}

执行结果
reentrantLOck执行结果

结果分析
循环建立100个线程,每个线程都在不停转账,由于ReentrantLock的使用,任何时刻所有账户的总额都保持不变。另外,把钱amount从A账户转到B账户,要先判断A账户中是否有这么多钱,不过没有就调用条件对象ConditionObject中的await()方法,放弃该线程,等该其它线程转钱进来;转钱完成后调用.siginalAll()。

posted @ 2018-09-15 19:40  想飞_毛毛虫  阅读(13304)  评论(1编辑  收藏  举报