Netty源码分析 (六)----- 客户端接入accept过程

通读本文,你会了解到
1.netty如何接受新的请求
2.netty如何给新请求分配reactor线程
3.netty如何给每个新连接增加ChannelHandler

netty中的reactor线程

netty中最核心的东西莫过于两种类型的reactor线程,可以看作netty中两种类型的发动机,驱动着netty整个框架的运转

一种类型的reactor线程是boos线程组,专门用来接受新的连接,然后封装成channel对象扔给worker线程组;还有一种类型的reactor线程是worker线程组,专门用来处理连接的读写

不管是boos线程还是worker线程,所做的事情均分为以下三个步骤

  1. 轮询注册在selector上的IO事件
  2. 处理IO事件
  3. 执行异步task

对于boos线程来说,第一步轮询出来的基本都是 accept 事件,表示有新的连接,而worker线程轮询出来的基本都是read/write事件,表示网络的读写事件

新连接的建立

简单来说,新连接的建立可以分为三个步骤
1.检测到有新的连接
2.将新的连接注册到worker线程组
3.注册新连接的读事件

检测到有新连接进入

我们已经知道,当服务端绑启动之后,服务端的channel已经注册到boos reactor线程中,reactor不断检测有新的事件,直到检测出有accept事件发生

NioEventLoop.java

private static void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final NioUnsafe unsafe = ch.unsafe();
    //检查该SelectionKey是否有效,如果无效,则关闭channel
    if (!k.isValid()) {
        // close the channel if the key is not valid anymore
        unsafe.close(unsafe.voidPromise());
        return;
    }

    try {
        int readyOps = k.readyOps();
        // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
        // to a spin loop
        // 如果准备好READ或ACCEPT则触发unsafe.read() ,检查是否为0,如上面的源码英文注释所说:解决JDK可能会产生死循环的一个bug。
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            unsafe.read();
            if (!ch.isOpen()) {//如果已经关闭,则直接返回即可,不需要再处理该channel的其他事件
                // Connection already closed - no need to handle write.
                return;
            }
        }
        // 如果准备好了WRITE则将缓冲区中的数据发送出去,如果缓冲区中数据都发送完成,则清除之前关注的OP_WRITE标记
        if ((readyOps & SelectionKey.OP_WRITE) != 0) {
            // Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
            ch.unsafe().forceFlush();
        }
        // 如果是OP_CONNECT,则需要移除OP_CONNECT否则Selector.select(timeout)将立即返回不会有任何阻塞,这样可能会出现cpu 100%
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
            // remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
            // See https://github.com/netty/netty/issues/924
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

该方法主要是对SelectionKey k进行了检查,有如下几种不同的情况

1)OP_ACCEPT,接受客户端连接

2)OP_READ, 可读事件, 即 Channel 中收到了新数据可供上层读取。

3)OP_WRITE, 可写事件, 即上层可以向 Channel 写入数据。

4)OP_CONNECT, 连接建立事件, 即 TCP 连接已经建立, Channel 处于 active 状态。

本篇博文主要来看下当boss线程 selector检测到OP_ACCEPT事件时,内部干了些什么。

if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
    unsafe.read();
    if (!ch.isOpen()) {//如果已经关闭,则直接返回即可,不需要再处理该channel的其他事件
        // Connection already closed - no need to handle write.
        return;
    }
}

boos reactor线程已经轮询到 SelectionKey.OP_ACCEPT 事件,说明有新的连接进入,此时将调用channel的 unsafe来进行实际的操作,此时的channel为 NioServerSocketChannel,则unsafe为NioServerSocketChannel的属性NioMessageUnsafe

那么,我们进入到它的read方法,进入新连接处理的第二步

注册到reactor线程

NioMessageUnsafe.java

private final List<Object> readBuf = new ArrayList<Object>();

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelPipeline pipeline = pipeline();
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    do {
        int localRead = doReadMessages(readBuf);
        if (localRead == 0) {
            break;
        }
        if (localRead < 0) {
            closed = true;
            break;
        }
    } while (allocHandle.continueReading());
    int size = readBuf.size();
    for (int i = 0; i < size; i ++) {
        pipeline.fireChannelRead(readBuf.get(i));
    }
    readBuf.clear();
    pipeline.fireChannelReadComplete();
}

调用 doReadMessages 方法不断地读取消息,用 readBuf 作为容器,这里,其实可以猜到读取的是一个个连接,然后调用 pipeline.fireChannelRead(),将每条新连接经过一层服务端channel的洗礼,之后清理容器,触发 pipeline.fireChannelReadComplete()

下面我们具体看下这两个方法

1.doReadMessages(List)
2.pipeline.fireChannelRead(NioSocketChannel)

doReadMessages()

protected int doReadMessages(List<Object> buf) throws Exception {
    SocketChannel ch = javaChannel().accept();

    try {
        if (ch != null) {
            buf.add(new NioSocketChannel(this, ch));
            return 1;
        }
    } catch (Throwable t) {
        logger.warn("Failed to create a new channel from an accepted socket.", t);

        try {
            ch.close();
        } catch (Throwable t2) {
            logger.warn("Failed to close a socket.", t2);
        }
    }

    return 0;
}

我们终于窥探到netty调用jdk底层nio的边界 javaChannel().accept();,由于netty中reactor线程第一步就扫描到有accept事件发生,因此,这里的accept方法是立即返回的,返回jdk底层nio创建的一条channel

ServerSocketChannel有阻塞和非阻塞两种模式:

a、阻塞模式:ServerSocketChannel.accept() 方法监听新进来的连接,当 accept()方法返回的时候,它返回一个包含新进来的连接的 SocketChannel。阻塞模式下, accept()方法会一直阻塞到有新连接到达。

b、非阻塞模式:,accept() 方法会立刻返回,如果还没有新进来的连接,返回的将是null。 因此,需要检查返回的SocketChannel是否是null.

在NioServerSocketChannel的构造函数分析中,我们知道,其通过ch.configureBlocking(false);语句设置当前的ServerSocketChannel为非阻塞的

netty将jdk的 SocketChannel 封装成自定义的 NioSocketChannel,加入到list里面,这样外层就可以遍历该list,做后续处理

从上一篇文章中,我们已经知道服务端的创建过程中会创建netty中一系列的核心组件,包括pipeline,unsafe等等,那么,接受一条新连接的时候是否也会创建这一系列的组件呢?

带着这个疑问,我们跟进去

NioSocketChannel.java

public NioSocketChannel(Channel parent, SocketChannel socket) {
    super(parent, socket);
    config = new NioSocketChannelConfig(this, socket.socket());
}

我们重点分析 super(parent, socket),NioSocketChannel的父类为 AbstractNioByteChannel

AbstractNioByteChannel.java

protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) {
    super(parent, ch, SelectionKey.OP_READ);
}

这里,我们看到jdk nio里面熟悉的影子—— SelectionKey.OP_READ,一般在原生的jdk nio编程中,也会注册这样一个事件,表示对channel的读感兴趣

我们继续往上,追踪到AbstractNioByteChannel的父类 AbstractNioChannel, 这里,我相信读了上一篇文章你对于这部分代码肯定是有印象的

protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
    super(parent);
    this.ch = ch;
    this.readInterestOp = readInterestOp;
    try {
        ch.configureBlocking(false);
    } catch (IOException e) {
        try {
            ch.close();
        } catch (IOException e2) {
            if (logger.isWarnEnabled()) {
                logger.warn(
                        "Failed to close a partially initialized socket.", e2);
            }
        }
        throw new ChannelException("Failed to enter non-blocking mode.", e);
    }
}

在创建服务端channel的时候,最终也会进入到这个方法,super(parent), 便是在AbstractChannel中创建一系列和该channel绑定的组件,如下

protected AbstractChannel(Channel parent) {
    this.parent = parent;
    id = newId();
    unsafe = newUnsafe();
    pipeline = newChannelPipeline();
}

而这里的 readInterestOp 表示该channel关心的事件是 SelectionKey.OP_READ,后续会将该事件注册到selector,之后设置该通道为非阻塞模式,在channel中创建 unsafe 和一条 pipeline 

pipeline.fireChannelRead(NioSocketChannel)

对于 pipeline我们前面已经了解过,在netty的各种类型的channel中,都会包含一个pipeline,字面意思是管道,我们可以理解为一条流水线工艺,流水线工艺有起点,有结束,中间还有各种各样的流水线关卡,一件物品,在流水线起点开始处理,经过各个流水线关卡的加工,最终到流水线结束

对应到netty里面,流水线的开始就是HeadContxt,流水线的结束就是TailConextHeadContxt中调用Unsafe做具体的操作,TailConext中用于向用户抛出pipeline中未处理异常以及对未处理消息的警告

通过前面的文章中,我们已经知道在服务端的channel初始化时,在pipeline中,已经自动添加了一个pipeline处理器 ServerBootstrapAcceptor, 并已经将用户代码中设置的一系列的参数传入了构造函数,接下来,我们就来看下ServerBootstrapAcceptor

ServerBootstrapAcceptor.java

private static class ServerBootstrapAcceptor extends ChannelInboundHandlerAdapter {
    private final EventLoopGroup childGroup;
    private final ChannelHandler childHandler;
    private final Entry<ChannelOption<?>, Object>[] childOptions;
    private final Entry<AttributeKey<?>, Object>[] childAttrs;

    ServerBootstrapAcceptor(
            EventLoopGroup childGroup, ChannelHandler childHandler,
            Entry<ChannelOption<?>, Object>[] childOptions, Entry<AttributeKey<?>, Object>[] childAttrs) {
        this.childGroup = childGroup;
        this.childHandler = childHandler;
        this.childOptions = childOptions;
        this.childAttrs = childAttrs;
    }

    public void channelRead(ChannelHandlerContext ctx, Object msg) {
        final Channel child = (Channel) msg;

        child.pipeline().addLast(childHandler);

        for (Entry<ChannelOption<?>, Object> e: childOptions) {
            try {
                if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) {
                    logger.warn("Unknown channel option: " + e);
                }
            } catch (Throwable t) {
                logger.warn("Failed to set a channel option: " + child, t);
            }
        }

        for (Entry<AttributeKey<?>, Object> e: childAttrs) {
            child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
        }

        try {
            childGroup.register(child).addListener(new ChannelFutureListener() {
                @Override
                public void operationComplete(ChannelFuture future) throws Exception {
                    if (!future.isSuccess()) {
                        forceClose(child, future.cause());
                    }
                }
            });
        } catch (Throwable t) {
            forceClose(child, t);
        }
    }
}

前面的 pipeline.fireChannelRead(NioSocketChannel); 最终通过head->unsafe->ServerBootstrapAcceptor的调用链,调用到这里的 ServerBootstrapAcceptor 的channelRead方法,而 channelRead 一上来就把这里的msg强制转换为 Channel

然后,拿到该channel,也就是我们之前new出来的 NioSocketChannel中对应的pipeline,将用户代码中的 childHandler,添加到pipeline,这里的 childHandler 在用户代码中的体现为

ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
 .channel(NioServerSocketChannel.class)
 .childHandler(new ChannelInitializer<SocketChannel>() {
     @Override
     public void initChannel(SocketChannel ch) throws Exception {
         ChannelPipeline p = ch.pipeline();
         p.addLast(new EchoServerHandler());
     }
 });

其实对应的是 ChannelInitializer,到了这里,NioSocketChannel中pipeline对应的处理器为 head->ChannelInitializer->tail,牢记,后面会再次提到!

接着,设置 NioSocketChannel 对应的 attr和option,然后进入到 childGroup.register(child),这里的childGroup就是我们在启动代码中new出来的NioEventLoopGroup

我们进入到NioEventLoopGroupregister方法,代理到其父类MultithreadEventLoopGroup

MultithreadEventLoopGroup.java

public ChannelFuture register(Channel channel) {
    return next().register(channel);
}

这里又扯出来一个 next()方法,我们跟进去

MultithreadEventLoopGroup.java

@Override
public EventLoop next() {
    return (EventLoop) super.next();
}

回到其父类

MultithreadEventExecutorGroup.java

@Override
public EventExecutor next() {
    return chooser.next();
}

这里的chooser对应的类为 EventExecutorChooser,字面意思为事件执行器选择器,放到我们这里的上下文中的作用就是从worker reactor线程组中选择一个reactor线程

public interface EventExecutorChooserFactory {

    /**
     * Returns a new {@link EventExecutorChooser}.
     */
    EventExecutorChooser newChooser(EventExecutor[] executors);

    /**
     * Chooses the next {@link EventExecutor} to use.
     */
    @UnstableApi
    interface EventExecutorChooser {

        /**
         * Returns the new {@link EventExecutor} to use.
         */
        EventExecutor next();
    }
}

chooser的实现有两种

public final class DefaultEventExecutorChooserFactory implements EventExecutorChooserFactory {

    public static final DefaultEventExecutorChooserFactory INSTANCE = new DefaultEventExecutorChooserFactory();

    private DefaultEventExecutorChooserFactory() { }

    @SuppressWarnings("unchecked")
    @Override
    public EventExecutorChooser newChooser(EventExecutor[] executors) {
        if (isPowerOfTwo(executors.length)) {
            return new PowerOfTowEventExecutorChooser(executors);
        } else {
            return new GenericEventExecutorChooser(executors);
        }
    }

    private static boolean isPowerOfTwo(int val) {
        return (val & -val) == val;
    }

    private static final class PowerOfTowEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        PowerOfTowEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[idx.getAndIncrement() & executors.length - 1];
        }
    }

    private static final class GenericEventExecutorChooser implements EventExecutorChooser {
        private final AtomicInteger idx = new AtomicInteger();
        private final EventExecutor[] executors;

        GenericEventExecutorChooser(EventExecutor[] executors) {
            this.executors = executors;
        }

        @Override
        public EventExecutor next() {
            return executors[Math.abs(idx.getAndIncrement() % executors.length)];
        }
    }
}

默认情况下,chooser通过 DefaultEventExecutorChooserFactory被创建,在创建reactor线程选择器的时候,会判断reactor线程的个数,如果是2的幂,就创建PowerOfTowEventExecutorChooser,否则,创建GenericEventExecutorChooser

两种类型的选择器在选择reactor线程的时候,都是通过Round-Robin的方式选择reactor线程,唯一不同的是,PowerOfTowEventExecutorChooser是通过与运算,而GenericEventExecutorChooser是通过取余运算,与运算的效率要高于求余运算

选择完一个reactor线程,即 NioEventLoop 之后,我们回到注册的地方

public ChannelFuture register(Channel channel) {
    return next().register(channel);
}

SingleThreadEventLoop.java

@Override
public ChannelFuture register(Channel channel) {
    return register(new DefaultChannelPromise(channel, this));
}

其实,这里已经和服务端启动的过程一样了,可以参考我前面的文章

AbstractNioChannel.java

private void register0(ChannelPromise promise) {
    boolean firstRegistration = neverRegistered;
    doRegister();
    neverRegistered = false;
    registered = true;

    pipeline.invokeHandlerAddedIfNeeded();

    safeSetSuccess(promise);
    pipeline.fireChannelRegistered();
    if (isActive()) {
        if (firstRegistration) {
            pipeline.fireChannelActive();
        } else if (config().isAutoRead()) {
            beginRead();
        }
    }
}

和服务端启动过程一样,先是调用 doRegister();做真正的注册过程,如下

protected void doRegister() throws Exception {
    boolean selected = false;
    for (;;) {
        try {
            selectionKey = javaChannel().register(eventLoop().selector, 0, this);
            return;
        } catch (CancelledKeyException e) {
            if (!selected) {
                eventLoop().selectNow();
                selected = true;
            } else {
                throw e;
            }
        }
    }
}

将该条channel绑定到一个selector上去,一个selector被一个reactor线程使用,后续该channel的事件轮询,以及事件处理,异步task执行都是由此reactor线程来负责

绑定完reactor线程之后,调用 pipeline.invokeHandlerAddedIfNeeded()

前面我们说到,到目前为止NioSocketChannel 的pipeline中有三个处理器,head->ChannelInitializer->tail,最终会调用到 ChannelInitializer 的 handlerAdded 方法

public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
    if (ctx.channel().isRegistered()) {
        initChannel(ctx);
    }
}

handlerAdded方法调用 initChannel 方法之后,调用remove(ctx);将自身删除,如下

AbstractNioChannel.java

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.putIfAbsent(ctx, Boolean.TRUE) == null) { 
        try {
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            exceptionCaught(ctx, cause);
        } finally {
            remove(ctx);
        }
        return true;
    }
    return false;
}

而这里的 initChannel 方法又是神马玩意?让我们回到用户方法,比如下面这段用户代码

用户代码

ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
 .channel(NioServerSocketChannel.class)
 .option(ChannelOption.SO_BACKLOG, 100)
 .handler(new LoggingHandler(LogLevel.INFO))
 .childHandler(new ChannelInitializer<SocketChannel>() {
     @Override
     public void initChannel(SocketChannel ch) throws Exception {
         ChannelPipeline p = ch.pipeline();
         p.addLast(new LoggingHandler(LogLevel.INFO));
         p.addLast(new EchoServerHandler());
     }
 });

原来最终跑到我们自己的代码里去了啊!完了之后,NioSocketChannel绑定的pipeline的处理器就包括 head->LoggingHandler->EchoServerHandler->tail

注册读事件

接下来,我们还剩下这些代码没有分析完

AbstractNioChannel.java

private void register0(ChannelPromise promise) {
    // ..
    pipeline.fireChannelRegistered();
    if (isActive()) {
        if (firstRegistration) {
            pipeline.fireChannelActive();
        } else if (config().isAutoRead()) {
            beginRead();
        }
    }
}

pipeline.fireChannelRegistered();,其实没有干啥有意义的事情,最终无非是再调用一下业务pipeline中每个处理器的 ChannelHandlerAdded方法处理下回调

isActive()在连接已经建立的情况下返回true,所以进入方法块,进入到 pipeline.fireChannelActive();在这里我详细步骤先省略,直接进入到关键环节

AbstractNioChannel.java

@Override
protected void doBeginRead() throws Exception {
    // Channel.read() or ChannelHandlerContext.read() was called
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }

    readPending = true;

    final int interestOps = selectionKey.interestOps();
    if ((interestOps & readInterestOp) == 0) {
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

这里其实就是将 SelectionKey.OP_READ事件注册到selector中去,表示这条通道已经可以开始处理read事件了

总结

至此,netty中关于新连接的处理已经向你展示完了,我们做下总结

1.boos reactor线程轮询到有新的连接进入
2.通过封装jdk底层的channel创建 NioSocketChannel以及一系列的netty核心组件
3.将该条连接通过chooser,选择一条worker reactor线程绑定上去
4.注册读事件,开始新连接的读写

 

posted @ 2019-09-11 10:52  chen_hao  阅读(2243)  评论(0编辑  收藏  举报