HDU_1394_Minimum Inversion Number_线段树求逆序数
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 16686 Accepted Submission(s): 10145
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
线段树求逆序数,手撸。
先求初始序列的逆序数(nlogn),再推出所有情况,求的最小值。
#include<iostream> #include<cstring> #include<cstdio> #include<algorithm> using namespace std; #define lson l,mid,rt<<1 #define rson mid+1,r,rt<<1|1 #define maxn 5005 struct Node { int l,r; int sum; } tree[maxn<<2]; void build(int l,int r,int rt) { tree[rt].l=l; tree[rt].r=r; tree[rt].sum=0; if(tree[rt].l==tree[rt].r) return; int mid=(l+r)/2; build(lson); build(rson); } void update(int x,int l,int r,int rt) { if(tree[rt].l==x&&tree[rt].r==x) { tree[rt].sum++; return; } int mid=(l+r)/2; if(x<=mid) update(x,lson); else update(x,rson); tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum; } int ans=0; int query(int L,int R,int l,int r,int rt) { if(L>R) return 0; if(L==tree[rt].l&&R==tree[rt].r) { // cout<<tree[rt].sum<<endl; return tree[rt].sum; } int mid=(l+r)/2; if(R<=mid) return query(L,R,lson); else if(L>mid) return query(L,R,rson); else { return query(L,mid,lson)+query(mid+1,R,rson); } } int num[5005]; int main() { int n; while(scanf("%d",&n)!=EOF) { ans=0;build(1,n,1); for(int i=0; i<n; i++) { scanf("%d",&num[i]); num[i]++; } //cout<<tree[16].l<<'*'<<tree[16].r<<endl; for(int i=n-1;i>=0;i--) { //cout<<num[i]<<'&'<<endl; if(i!=n-1) ans+=query(1,num[i]-1,1,n,1); //cout<<ans<<endl; update(num[i],1,n,1); //cout<<ans<<endl; } int res=ans; for(int i=0;i<n-1;i++) { res=res+n-num[i]-num[i]+1; ans=min(res,ans); } printf("%d\n",ans); } return 0; }