HDU_1024_dp

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24252    Accepted Submission(s): 8312


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

 

Output
Output the maximal summation described above in one line.
 

 

Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

 

Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 
 
n个数,求m个不相交区间子段的最大值。
 
状态dp[i][j]
有前j个数,组成i组的和的最大值。
决策: 第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000,  继续滚动数组。
时间复杂度 n^3. n<=1000000.  显然会超时,继续优化。
优化:max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。我们可以在每次计算dp[i][j]的时候记录下前j个
的最大值 用数组保存下来  下次计算的时候可以用,这样时间复杂度为 n^2.
#include<cstdio>
#include<iostream>
#include<malloc.h>
#include<cstring>
#include<map>
#include<string>
using namespace std;
#define LL long long
#define INF 0x7fffffff

int value[1000005];
LL dp[1000005];
LL maxn[1000005];

int main()
{
    int m,n,num;
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        memset(dp,0,sizeof(dp));
        memset(maxn,0,sizeof(maxn));
        for(int i=1; i<=n; i++)
            scanf("%d",&value[i]);
        LL ans=0;
        LL temp;
        for(int i=1; i<=m; i++)
        {
            temp=-INF;
            for(int j=i; j<=n; j++)
            {
                dp[j]=max(dp[j-1],maxn[j-1])+value[j];
                maxn[j-1]=temp;
                temp=max(temp,dp[j]);
            }
            //cout<<dp[0][3]<<endl;

        }printf("%I64d\n",temp);
    }
    return 0;
}
View Code

 

posted on 2016-05-12 21:15  JASONlee3  阅读(228)  评论(0编辑  收藏  举报

导航