POJ_3041_Asteroids
参考自: http://user.qzone.qq.com/289065406/blog/1299322465
解题思路:
把方阵看做一个特殊的二分图(以行列分别作为两个顶点集V1、V2,其中| V1|=| V2|)
然后把每行x或者每列y看成一个点,而障碍物(x,y)可以看做连接x和y的边。按照这种思路构图后。问题就转化成为选择最少的一些点(x或y),使得从这些点与所有的边相邻,其实这就是最小点覆盖问题。
再利用二分图最大匹配的König定理:
最小点覆盖数 = 最大匹配数
(PS:最小点覆盖:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖图的所有的边。)
因此本题自然转化为求 二分图的最大匹配 问题
求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的时间复杂度为边数的指数级函数。
因此,需要寻求一种更加高效的算法——用增广路求最大匹配的方法(匈牙利算法)
增广路的定义(也称增广轨或交错轨):
若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。
由增广路的定义可以推出下述三个结论:
1、P的路径个数必定为奇数,第一条边和最后一条边都不属于M。
2、将M和P进行取反操作可以得到一个更大的匹配M’
(反操作:把P中的 匹配边 与 非匹配边 互换)
3、M为G的最大匹配当且仅当不存在M的增广路径P
匈牙利算法轮廓:
(1)置M为空
(2)找出一条增广路径P,通过异或操作获得更大的匹配M’代替M
(3)重复(2)操作直到找不出增广路径为止
代码:
#include<iostream> #include<cstdio> #include<cstring> using namespace std; #define Del(x,y) memset(x,y,sizeof(x)) int map[505][505],vis[505],link[505]; int n,k; bool dfs(int x) { for(int i=1;i<=n;i++) if(map[x][i]==1&&vis[i]==0) { vis[i]=1; if(link[i]==-1||dfs(link[i])) { link[i]=x; return true; } } return false; } void solve() { int ans=0; Del(link,-1); for(int i=1;i<=n;i++) { Del(vis,0); if(dfs(i)) ans++; } printf("%d\n",ans); } int main() { int r,c; scanf("%d%d",&n,&k); Del(map,0); while(k--) { scanf("%d%d",&r,&c); map[r][c]=1; } solve(); return 0; }