bzoj1798 维护序列

Description

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。

Input

第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值 (1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

Output

对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

Sample Input

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

Sample Output

2
35
8

HINT

【样例说明】

初始时数列为(1,2,3,4,5,6,7)。
经过第1次操作后,数列为(1,10,15,20,25,6,7)。
对第2次操作,和为10+15+20=45,模43的结果是2。
经过第3次操作后,数列为(1,10,24,29,34,15,16}
对第4次操作,和为1+10+24=35,模43的结果是35。
对第5次操作,和为29+34+15+16=94,模43的结果是8。



测试数据规模如下表所示

数据编号 1 2 3 4 5 6 7 8 9 10
N= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000
M= 10 1000 1000 10000 60000 70000 80000 90000 100000 100000

 
线段树乘法模板
乘法的难点在于考虑先加再乘还是先乘再加

当lazytage下标传递的时候,我们需要考虑,是先加再乘还是先乘再加。我们只需要对lazytage做这样一个处理。

lazytage分为两种,分别是加法的plz和乘法的mlz。

mlz很简单处理,pushdown时直接*父亲的就可以了,那么加法呢?

我们需要把原先的plz*父亲的mlz再加上父亲的plz.

 

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <vector>
using namespace std;
#define MAXN 100010
#define INF 10000009
#define MOD 10000007
#define LL long long
#define in(a) a=read()
#define REP(i,k,n) for(long long i=k;i<=n;i++)
#define DREP(i,k,n) for(long long i=k;i>=n;i--)
#define cl(a) memset(a,0,sizeof(a))
inline long long read(){
    long long x=0,f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
    return x*f;
}
inline void out(long long x){
    if(x<0) putchar('-'),x=-x;
    if(x>9) out(x/10);
    putchar(x%10+'0');
}
long long n,m,p;
long long input[MAXN];
struct node{
    long long l,r;
    long long sum,mlz,plz;
}tree[4*MAXN];
inline void build(long long i,long long l,long long r){
    tree[i].l=l;
    tree[i].r=r;
    tree[i].mlz=1;
    if(l==r){
        tree[i].sum=input[l]%p;
        return ;
    }
    long long mid=(l+r)>>1;
    build(i<<1,l,mid);
    build(i<<1|1,mid+1,r);
    tree[i].sum=(tree[i<<1].sum+tree[i<<1|1].sum)%p;
    return ;
}
inline void pushdown(long long i){
    long long k1=tree[i].mlz,k2=tree[i].plz;
    tree[i<<1].sum=(tree[i<<1].sum*k1+k2*(tree[i<<1].r-tree[i<<1].l+1))%p;
    tree[i<<1|1].sum=(tree[i<<1|1].sum*k1+k2*(tree[i<<1|1].r-tree[i<<1|1].l+1))%p;
    tree[i<<1].mlz=(tree[i<<1].mlz*k1)%p;
    tree[i<<1|1].mlz=(tree[i<<1|1].mlz*k1)%p;
    tree[i<<1].plz=(tree[i<<1].plz*k1+k2)%p;
    tree[i<<1|1].plz=(tree[i<<1|1].plz*k1+k2)%p;
    tree[i].plz=0;
    tree[i].mlz=1;
    return ;
}
inline void mul(long long i,long long l,long long r,long long k){
    if(tree[i].r<l || tree[i].l>r)  return ;
    if(tree[i].l>=l && tree[i].r<=r){
        tree[i].sum=(tree[i].sum*k)%p;
        tree[i].mlz=(tree[i].mlz*k)%p;
        tree[i].plz=(tree[i].plz*k)%p;
        return ;
    }
    pushdown(i);
    if(tree[i<<1].r>=l)  mul(i<<1,l,r,k);
    if(tree[i<<1|1].l<=r)  mul(i<<1|1,l,r,k);
    tree[i].sum=(tree[i<<1].sum+tree[i<<1|1].sum)%p;
    return ;
}
inline void add(long long i,long long l,long long r,long long k){
    if(tree[i].r<l || tree[i].l>r)  return ;
    if(tree[i].l>=l && tree[i].r<=r){
        tree[i].sum+=((tree[i].r-tree[i].l+1)*k)%p;
        tree[i].plz=(tree[i].plz+k)%p;
        return ;
    }
    pushdown(i);
    if(tree[i<<1].r>=l)  add(i<<1,l,r,k);
    if(tree[i<<1|1].l<=r)  add(i<<1|1,l,r,k);
    tree[i].sum=(tree[i<<1].sum+tree[i<<1|1].sum)%p;
    return ;
}
inline long long search(long long i,long long l,long long r){
    if(tree[i].r<l || tree[i].l>r)  return 0;
    if(tree[i].l>=l && tree[i].r<=r)
        return tree[i].sum;
    pushdown(i);
    long long sum=0;
    if(tree[i<<1].r>=l)  sum+=search(i<<1,l,r)%p;
    if(tree[i<<1|1].l<=r)  sum+=search(i<<1|1,l,r)%p;
    return sum%p;
}
int main(){
    in(n);in(p);
    REP(i,1,n)  in(input[i]);
    build(1,1,n); 
    in(m);
    REP(i,1,m){
        long long fl,a,b,c;
        in(fl);
        if(fl==1){
            in(a);in(b);in(c);
            c%=p;
            mul(1,a,b,c);
        }
        if(fl==2){
            in(a);in(b);in(c);
            c%=p;
            add(1,a,b,c);
        }
        if(fl==3){
            in(a);in(b);
            printf("%lld\n",search(1,a,b));
        }
    }
    return 0;
}
/*
5 4 1000
1 2 3 4 5
3 1 5
2 1 5 1
1 1 5 2

3 1 5
*/ 

 

posted @ 2018-09-26 18:37  Dijkstra·Liu  阅读(198)  评论(0编辑  收藏  举报