bzoj4289 Tax
Description
给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价。起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边权
N<=100000
M<=200000
Sample Input
4 5
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
1 2 5
1 3 2
2 3 1
2 4 4
3 4 8
Sample Output
12
很容易想到暴力:化边为点,每两个点中间的边权为两个原来边的更大的权,如图,红色的点是新点:
但是,如果出现了菊花图,那么新边的个数会变成M^2,原地爆炸,我们必须优化建边。
考虑把原来的无向边,变成两条有向边,也就是在新图上把一个点拆成两个点,这两个点之间的边权是原边的边权。
对于每一个原图上的点,把它的所有出边进行排序,每条出边从小到大连一条两个边权之差的边,如图:
这样运用查分建图,就好比,我要过这个点,原来是一起交了钱,现在建完图是先交进入的钱,再将出边和入边的差补交上去。
然后,再将新图建立S、T分别是源点的汇点。将S连向所有原图起点的出边,所有原图终点的入边连向T。
最后图会成为这个样子:
当然,最后跑一边Dijkstra,SPFA会被卡。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <cstdlib> #define REP(i,k,n) for(int i=k;i<=n;i++) #define in(a) a=read() #define MAXN 400040 using namespace std; inline int read(){ int x=0,f=1; char ch=getchar(); for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1; for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0'; return x*f; } int n,m; int S,T; int total,head[MAXN],to[MAXN*2],nxt[MAXN*2],val[MAXN*2]; int Total,Head[2000000],To[2000000],Nxt[2000000],Val[2000000]; int vis[400010]; long long dis[400010]; struct edge{ int id,va; }st[MAXN*2]; struct node{ int a; long long b; bool operator <(const node &x)const{ return b>x.b; } }; priority_queue<node> Q; inline int change(int x){ if(x%2==1) return x+1; return x-1; } inline void adl(int a,int b,int c){ total++; to[total]=b; val[total]=c; nxt[total]=head[a]; head[a]=total; return ; } inline void Adl(int a,int b,int c){ Total++; To[Total]=b; Val[Total]=c; Nxt[Total]=Head[a]; Head[a]=Total; return ; } inline bool cmp(edge a,edge b){ return a.va<b.va; } inline void solve(int u){ int cnt=0; for(int e=head[u];e;e=nxt[e]) st[++cnt].id=e,st[cnt].va=val[e]; sort(st+1,st+cnt+1,cmp);//对于u的所有出边排序 REP(i,1,cnt-1) Adl(st[i].id,st[i+1].id,st[i+1].va-st[i].va),Adl(st[i+1].id,st[i].id,0);//连查分边 for(int e=head[u];e;e=nxt[e]) Adl(change(e),e,val[e]);//每一条出边连向所对入边 return ; } inline long long Dijkstra(){ memset(dis,0x7f,sizeof(dis)); dis[S]=0; node p; p.a=S,p.b=0; Q.push(p); while(!Q.empty()){ int u=Q.top().a;Q.pop(); if(vis[u]) continue; vis[u]=1; for(int e=Head[u];e;e=Nxt[e]) if(dis[To[e]]>dis[u]+Val[e]){ dis[To[e]]=dis[u]+Val[e]; node q; q.a=To[e],q.b=dis[To[e]]; Q.push(q); } } return dis[T]; } int main(){ in(n),in(m); int a,b,c; REP(i,1,m) in(a),in(b),in(c),adl(a,b,c),adl(b,a,c); S=0,T=total+1; for(int e=head[1];e;e=nxt[e]) Adl(S,e,val[e]);//处理源点 for(int e=head[n];e;e=nxt[e]) Adl(change(e),T,val[e]);//处理汇点 for(int i=1;i<=n;i++) solve(i); printf("%d",Dijkstra()); return 0; } /* 4 5 1 2 5 1 3 2 2 3 1 2 4 4 3 4 8 */