clickhouse使用Spark导入数据

本文主要介绍如何通过Spark程序写入数据到Clickhouse中。

操作步骤

  1. 准备Spark程序目录结构。
     
     find .
    .
    ./build.sbt
    ./src
    ./src/main
    ./src/main/scala
    ./src/main/scala/com
    ./src/main/scala/com/spark
    ./src/main/scala/com/spark/test
    ./src/main/scala/com/spark/test/WriteToCk.scala
  2. 编辑build.sbt配置文件添加依赖。
     
    name := "Simple Project"
    
    version := "1.0"
    
    scalaVersion := "2.12.10"
    
    libraryDependencies += "org.apache.spark" %% "spark-sql" % "3.0.0"
    
    libraryDependencies += "ru.yandex.clickhouse" % "clickhouse-jdbc" % "0.2.4"
  3. 创建WriteToCk.scala数据写入程序文件。
     
    package com.spark.test
    
    import java.util
    import java.util.Properties
    
    import org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions
    import org.apache.spark.SparkConf
    import org.apache.spark.sql.{SaveMode, SparkSession}
    import org.apache.spark.storage.StorageLevel
    
    object WriteToCk {
      val properties = new Properties()
      properties.put("driver", "ru.yandex.clickhouse.ClickHouseDriver")
      properties.put("user", "<your-user-name>")
      properties.put("password", "<your-password>")
      properties.put("batchsize","100000")
      properties.put("socket_timeout","300000")
      properties.put("numPartitions","8")
      properties.put("rewriteBatchedStatements","true")
    
      val url = "jdbc:clickhouse://<you-url>:8123/default"
      val table = "<your-table-name>"
    
      def main(args: Array[String]): Unit = {
        val sc = new SparkConf()
        sc.set("spark.driver.memory", "1G")
        sc.set("spark.driver.cores", "4")
        sc.set("spark.executor.memory", "1G")
        sc.set("spark.executor.cores", "2")
    
        val session = SparkSession.builder().master("local[*]").config(sc).appName("write-to-ck").getOrCreate()
    
        val df = session.read.format("csv")
          .option("header", "true")
          .option("sep", ",")
          .option("inferSchema", "true")
          .load("</your/path/to/test/data/a.txt>")
          .selectExpr(
            "Year",
            "Quarter",
            "Month"
          )
          .persist(StorageLevel.MEMORY_ONLY_SER_2)
        println(s"read done")
    
        df.write.mode(SaveMode.Append).option(JDBCOptions.JDBC_BATCH_INSERT_SIZE, 100000).jdbc(url, table, properties)
        println(s"write done")
    
        df.unpersist(true)
      }
    }

    参数说明

    • your-user-name:目标ClickHouse集群中创建的数据库账号名。
    • your-pasword:数据库账号名对应的密码。
    • your-url:目标ClickHouse集群地址。
    • /your/path/to/test/data/a.txt:要导入的数据文件的路径,包含文件地址和文件名。
       
      说明 文件中的数据及schema,需要与ClickHouse中目标表的结构保持一致。
    • your-table-name:ClickHouse集群中的目标表名称。
  4. 编译打包。
     
    sbt package
  5. 运行。
     
    ${SPARK_HOME}/bin/spark-submit  --class "com.spark.test.WriteToCk"  --master local[4] --conf "spark.driver.extraClassPath=${HOME}/.m2/repository/ru/yandex/clickhouse/clickhouse-jdbc/0.2.4/clickhouse-jdbc-0.2.4.jar" --conf "spark.executor.extraClassPath=${HOME}/.m2/repository/ru/yandex/clickhouse/clickhouse-jdbc/0.2.4/clickhouse-jdbc-0.2.4.jar" target/scala-2.12/simple-project_2.12-1.0.jar
 
 
posted @ 2021-05-27 14:09  jason_wei  阅读(1426)  评论(0编辑  收藏  举报