leetcode72 - Edit Distance - hard
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
1. Insert a character
2. Delete a character
3. Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
DP。
定义:dp[i][j]对s, t是说s[0~i]和t[0~j]之间的edit distance是多少。
初始化:第一行第一列都按当前下标来。(即把“”变为当前这么长的substring要的代价嘛)
转移方程:
1.s[i] == s[j]时,dp[i][j] = dp[i - 1][j - 1]。(当两个字符相等时一起划掉看前面的答案,上面三种edit方法都不需要)
2.s[I] != s[j]时,dp[i][j] = 1 + min(dp[i - 1][j], dp[i][j - 1], dp[i-1][j-1]) (字母越多是越麻烦的。先用1步解决掉最后两个字母不相等的问题,再翻前面的答案本本从而找到当前解决方案所需要的以前代价。解决方法有三种:删s的最后一个,删t的最后一个,把s的替代成j的)
我的实现:
class Solution { public int minDistance(String word1, String word2) { if (word1 == null || word2 == null) { return -1; } int[][] dp = new int[word1.length() + 1][word2.length() + 1]; for (int j = 1; j < dp[0].length; j++) { dp[0][j] = j; } for (int i = 1; i < dp.length; i++) { dp[i][0] = i; } for (int i = 1; i < dp.length; i++) { for (int j = 1; j < dp[0].length; j++) { if (word1.charAt(i - 1) == word2.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = 1 + Math.min(dp[i - 1][j], Math.min(dp[i][j - 1], dp[i - 1][j - 1])); } } } return dp[word1.length()][word2.length()]; } }