实验3:OpenFlow协议分析实践

一、实验目的

1.能够运用 wireshark 对 OpenFlow 协议数据交互过程进行抓包;

2.能够借助包解析工具,分析与解释 OpenFlow协议的数据包交互过程与机制。

二、实验环境

1.下载虚拟机软件Oracle VisualBox;

2.在虚拟机中安装Ubuntu 20.04 Desktop amd64,并完整安装Mininet;

三、实验要求

(一)基本要求

1.搭建下图所示拓扑,完成相关 IP 配置,并实现主机与主机之间的 IP 通信。用抓包软件获取控制器与交换机之间的通信数据包。

主机 IP地址
h1 192.168.0.101/24
h2 192.168.0.102/24
h3 192.168.0.103/24
h4 192.168.0.104/24
  • 在终端输入sudo ./../mininet/examples/miniedit.py搭建拓扑

  • 配置网段

  • 配置IP地址

  • 保存为py文件

2.查看抓包结果,分析OpenFlow协议中交换机与控制器的消息交互过程,画出相关交互图或流程图。

(1)Hello

  • 控制器6633端口(我最高能支持OpenFlow 1.0) ---> 交换机41236端口

  • 交换机41236端口(我最高能支持OpenFlow 1.5)--- 控制器6633端口

  • 于是双方建立连接,并使用OpenFlow 1.0

(2)Features Request / Set Conig

  • 控制器6633端口(我需要你的特征信息) ---> 交换机41236端口

  • 控制器6633端口(请按照我给你的flag和max bytes of packet进行配置) ---> 交换机41236端口
    • flag:指示交换机如何处理 IP 分片数据包
    • max bytes of packet:当交换机无法处理到达的数据包时,向控制器发送如何处理的最大字节数,本实验中控制器发送的值是0x0080,即128字节。

(3)Port_Status

  • 当交换机端口发生变化时,告知控制器相应的端口状态。

(4)Features Reply

  • 交换机41236端口(这是我的特征信息,请查收)--- 控制器6633端口

(5)Packet_in

  • 有两种情况:
    • 交换机查找流表,发现没有匹配条目时
    • 有匹配条目但是对应的action是OUTPUT=CONTROLLER时
  • 交换机41236端口(有数据包进来,请指示)--- 控制器6633端口

  • 分析抓取的数据包,可以发现是因为交换机发现此时自己并没有匹配的流表(Reason: No matching flow (table-miss flow entry) (0)),所以要问控制器如何处理

(6)Flow_mod

  • 分析抓取的flow_mod数据包,控制器通过6633端口向交换机41236端口、交换机41238端口下发流表项,指导数据的转发处理

  • 分析抓取的flow_mod数据包,控制器通过6633端口向交换机41236端口、交换机41238端口下发流表项,指导数据的转发处理

(7)Packet_out

  • 控制器6633端口(请按照我给你的action进行处理) ---> 交换机41236端口

(8)交互图

3.回答问题:交换机与控制器建立通信时是使用TCP协议还是UDP协议?

分析wireshark抓包,可以看出交换器与控制器建立通信时使用的是TCP协议。

(二)进阶要求

1.将抓包结果对照OpenFlow源码,了解OpenFlow主要消息类型对应的数据结构定义。

(1)Hello

struct ofp_header {
    uint8_t version;    /* OFP_VERSION. */
    uint8_t type;       /* One of the OFPT_ constants. */
    uint16_t length;    /* Length including this ofp_header. */
    uint32_t xid;       /* Transaction id associated with this packet.
                           Replies use the same id as was in the request
                           to facilitate pairing. */
};
/* OFPT_HELLO.  This message has an empty body, but implementations must
 * ignore any data included in the body, to allow for future extensions. */
struct ofp_hello {
    struct ofp_header header;
};
  • 对应

(2)Features Request

  • 与Hello中的数据格式相同

(3)Set Conig

/* Switch configuration. */
struct ofp_switch_config {
    struct ofp_header header;
    uint16_t flags;             /* OFPC_* flags. */
    uint16_t miss_send_len;     /* Max bytes of new flow that datapath should
                                   send to the controller. */
};
  • 对应

(4)Port_Status

/* A physical port has changed in the datapath */
struct ofp_port_status {
    struct ofp_header header;
    uint8_t reason;          /* One of OFPPR_*. */
    uint8_t pad[7];          /* Align to 64-bits. */
    struct ofp_phy_port desc;
};
  • 对应

(5)Features Reply

/* Description of a physical port */
struct ofp_phy_port {
    uint16_t port_no;
    uint8_t hw_addr[OFP_ETH_ALEN];
    char name[OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

    uint32_t config;        /* Bitmap of OFPPC_* flags. */
    uint32_t state;         /* Bitmap of OFPPS_* flags. */

    /* Bitmaps of OFPPF_* that describe features.  All bits zeroed if
     * unsupported or unavailable. */
    uint32_t curr;          /* Current features. */
    uint32_t advertised;    /* Features being advertised by the port. */
    uint32_t supported;     /* Features supported by the port. */
    uint32_t peer;          /* Features advertised by peer. */
};
/* Switch features. */
struct ofp_switch_features {
    struct ofp_header header;
    uint64_t datapath_id;   /* Datapath unique ID.  The lower 48-bits are for
                               a MAC address, while the upper 16-bits are
                               implementer-defined. */

    uint32_t n_buffers;     /* Max packets buffered at once. */

    uint8_t n_tables;       /* Number of tables supported by datapath. */
    uint8_t pad[3];         /* Align to 64-bits. */

    /* Features. */
    uint32_t capabilities;  /* Bitmap of support "ofp_capabilities". */
    uint32_t actions;       /* Bitmap of supported "ofp_action_type"s. */

    /* Port info.*/
    struct ofp_phy_port ports[0];  /* Port definitions.  The number of ports
                                      is inferred from the length field in
                                      the header. */
};
  • 对应

(6)Packet_in

/* Why is this packet being sent to the controller? */
enum ofp_packet_in_reason {
    OFPR_NO_MATCH,          /* No matching flow. */
    OFPR_ACTION             /* Action explicitly output to controller. */
};

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
    struct ofp_header header;
    uint32_t buffer_id;     /* ID assigned by datapath. */
    uint16_t total_len;     /* Full length of frame. */
    uint16_t in_port;       /* Port on which frame was received. */
    uint8_t reason;         /* Reason packet is being sent (one of OFPR_*) */
    uint8_t pad;
    uint8_t data[0];        /* Ethernet frame, halfway through 32-bit word,
                               so the IP header is 32-bit aligned.  The
                               amount of data is inferred from the length
                               field in the header.  Because of padding,
                               offsetof(struct ofp_packet_in, data) ==
                               sizeof(struct ofp_packet_in) - 2. */
};
  • 对应

(7)Flow_mod

/* Fields to match against flows */
struct ofp_match {
    uint32_t wildcards;        /* Wildcard fields. */
    uint16_t in_port;          /* Input switch port. */
    uint8_t dl_src[OFP_ETH_ALEN]; /* Ethernet source address. */
    uint8_t dl_dst[OFP_ETH_ALEN]; /* Ethernet destination address. */
    uint16_t dl_vlan;          /* Input VLAN id. */
    uint8_t dl_vlan_pcp;       /* Input VLAN priority. */
    uint8_t pad1[1];           /* Align to 64-bits */
    uint16_t dl_type;          /* Ethernet frame type. */
    uint8_t nw_tos;            /* IP ToS (actually DSCP field, 6 bits). */
    uint8_t nw_proto;          /* IP protocol or lower 8 bits of
                                * ARP opcode. */
    uint8_t pad2[2];           /* Align to 64-bits */
    uint32_t nw_src;           /* IP source address. */
    uint32_t nw_dst;           /* IP destination address. */
    uint16_t tp_src;           /* TCP/UDP source port. */
    uint16_t tp_dst;           /* TCP/UDP destination port. */
};
/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
    struct ofp_header header;
    struct ofp_match match;      /* Fields to match */
    uint64_t cookie;             /* Opaque controller-issued identifier. */

    /* Flow actions. */
    uint16_t command;             /* One of OFPFC_*. */
    uint16_t idle_timeout;        /* Idle time before discarding (seconds). */
    uint16_t hard_timeout;        /* Max time before discarding (seconds). */
    uint16_t priority;            /* Priority level of flow entry. */
    uint32_t buffer_id;           /* Buffered packet to apply to (or -1).
                                     Not meaningful for OFPFC_DELETE*. */
    uint16_t out_port;            /* For OFPFC_DELETE* commands, require
                                     matching entries to include this as an
                                     output port.  A value of OFPP_NONE
                                     indicates no restriction. */
    uint16_t flags;               /* One of OFPFF_*. */
    struct ofp_action_header actions[0]; /* The action length is inferred
                                            from the length field in the
                                            header. */
};
  • 对应

(8)Packet_out

/* Action header that is common to all actions.  The length includes the
 * header and any padding used to make the action 64-bit aligned.
 * NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
    uint16_t type;                  /* One of OFPAT_*. */
    uint16_t len;                   /* Length of action, including this
                                       header.  This is the length of action,
                                       including any padding to make it
                                       64-bit aligned. */
    uint8_t pad[4];
};
OFP_ASSERT(sizeof(struct ofp_action_header) == 8);

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
    struct ofp_header header;
    uint32_t buffer_id;           /* ID assigned by datapath (-1 if none). */
    uint16_t in_port;             /* Packet's input port (OFPP_NONE if none). */
    uint16_t actions_len;         /* Size of action array in bytes. */
    struct ofp_action_header actions[0]; /* Actions. */
    /* uint8_t data[0]; */        /* Packet data.  The length is inferred
                                     from the length field in the header.
                                     (Only meaningful if buffer_id == -1.) */
};
  • 对应

四、个人总结

  • 实验难度:适中
  • 实验过程遇到的困难及解决办法:
    • 第一次建立拓扑后,因为操作错误想重新做一次,结果再次运行py文件,提示说文件已存在,一时有点不知所措。查询资料后发现可以用sudo mn -c删除一下,然后重新启动虚拟机再重新运行就可以了。
    • 打开wireshark后创建拓扑,过滤出Openflow数据包,发现没有找到Flow_Mod的数据包。重新看了老师给的pdf,并上网搜索资料后发现要先pingall一下,才能找到Flow_mod数据包。
  • 个人感想:

这次实验是验证性实验,实验难度相对会容易些,只需要建立拓扑后在wireshark中操作,就是找包的时候数据比较多,看起来比较累眼睛。通过阅读openflow的源码,能理清楚其中的数据结构,并和实际抓到的包的详细信息对应起来,从而理解openflow协议的数据包交互过程。除此之外,对wireshark中过滤器的使用也有了更深刻的了解,对openflow协议有了更深刻的认识。

posted @ 2021-09-25 22:06  jasf  阅读(337)  评论(0编辑  收藏  举报