Spark集群安装部署
Spark课堂笔记
Spark生态圈:
Spark Core : RDD(弹性分布式数据集)
Spark SQL
Spark Streaming
Spark MLLib:协同过滤,ALS,逻辑回归等等 --> 机器学习
Spark Graphx : 图计算
重点在前三章
-----------------Spark Core------------------------
一、什么是Spark?特点?
https://spark.apache.org/
Apache Spark™ is a unified analytics engine for large-scale data processing.
特点:快、易用、通用性、兼容性(完全兼容Hadoop)
快:快100倍(Hadoop 3 之前)
易用:支持多种语言开发
通用性:生态系统全。
易用性:兼容Hadoop
spark 取代 Hadoop
二、安装和部署Spark、Spark 的 HA
1、spark体系结构
Spark的运行方式
Yarn
Standalone:本机调试(demo)
Worker:从节点。每个服务器上,资源和任务的管理者。只负责管理一个节点。
执行过程:
一个Worker 有多个 Executor。 Executor是任务的执行者,按阶段(stage)划分任务。————> RDD
客户端:Driver Program 提交任务到集群中。
1、spark-submit
2、spark-shell
2、spark的搭建
(1)准备工作:JDK 配置主机名 免密码登录
(2)伪分布式模式
在一台虚拟机上模拟分布式环境(Master和Worker在一个节点上)
export JAVA_HOME=/usr/java/jdk1.8.0_201
export SPARK_MASTER_HOST=node3
export SPARK_MASTER_PORT=7077
(3)全分布式环境
修改slave文件 拷贝到其他两台服务器 启动
3、Spark的 HA
回顾HA;
(*)HDFS Yarn Hbase Spark 主从结构
(*)单点故障
(1)基于文件目录的单点恢复
(*)本质:还是只有一个主节点Master,创建了一个恢复目录,保存集群状态和任务的信息。
当Master挂掉,重新启动时,会从恢复目录下读取状态信息,恢复出来原来的状态
用途:用于开发和测试,生产用zookeeper
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=FILESYSTEM
-Dspark.deploy.recoveryDirectory=/usr/local/spark-2.1.0-bin-hadoop2.7/recovery"
(2)基于Zookeeper :和Hadoop类似
(*)复习一下zookeeper:
相当于一个数据库,把一些信息存放在zookeeper中,比如集群的信息。
数据同步功能,选举功能,分布式锁功能
数据同步:给一个节点中写入数据,可以同步到其他节点
选举:Zookeeper中存在不同的角色,Leader Follower。如果Leader挂掉,重新选举Leader
分布式锁:秒杀。以目录节点的方式来保存数据。
修改 spark-env.sh
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=node3:2181,node4:2181,node5:2181
-Dspark.deploy.zookeeper.dir=/spark"
同步到其他两台服务器。
在node3 start-all node3 master node4 Worker node5 Worker
在node4 start-master node3 master node4 master(standby) node4 Worker node5 Worker
在node3上kill master
node4 master(Active) node4 Worker node5 Worker
在网页http://192.168.109.134:8080/ 可以看到相应信息
三、执行Spark的任务:两个工具
1、spark-submit:用于提交Spark的任务
任务:jar。
举例:蒙特卡洛求PI(圆周率)。
./spark-submit --master spark://node3:7077 --class
--class指明主程序的名字
/usr/local/spark-2.1.0-bin-hadoop2.7/bin/spark-submit --master spark://node3:7077
--class org.apache.spark.examples.SparkPi
/usr/local/spark-2.1.0-bin-hadoop2.7/examples/jars/spark-examples_2.11-2.1.0.jar 100
2、spark-shell 相当于REPL
作为一个独立的Application运行
两种模式:
(1)本地模式
spark-shell 后面不接任何参数,代表本地模式
Spark context available as 'sc' (master = local[*], app id = local-1554038459298).
sc 是 SparkContext 对象名。 local[*] 代表本地模式,不提交到集群中运行。
(2)集群模式
./spark-submit --master spark://node3:7077 提交到及群众运行
Spark context available as 'sc' (master = spark://node3:7077, app id = app-20190331212447-0000).
master = spark://node3:7077
Spark session available as 'spark'
Spark Session 是 2.0 以后提供的,利用 SparkSession 可以访问spark所有组件。
示例:WordCount程序
(*)处理本地文件,把结果打印到屏幕上
scala> sc.textFile("/usr/local/tmp_files/test_WordCount.txt")
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.collect
res0: Array[(String, Int)] = Array((is,1), (love,2), (capital,1), (Beijing,2), (China,2), (I,2), (of,1), (the,1))
(*)处理HDFS文件,结果保存在hdfs上
sc.textFile("hdfs://node1:8020/tmp_files/test_WordCount.txt")
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.saveAsTextFile("hdfs://node1:8020/output/0331/test_WordCount")
-rw-r--r-- 3 root supergroup 0 2019-03-31 21:43 /output/0331/test_WordCount/_SUCCESS
-rw-r--r-- 3 root supergroup 40 2019-03-31 21:43 /output/0331/test_WordCount/part-00000
-rw-r--r-- 3 root supergroup 31 2019-03-31 21:43 /output/0331/test_WordCount/part-00001
_SUCCESS 代表程序执行成功
part-00000 part-00001 结果文件,分区。里面内容不重复。
(*)单步运行WordCount ----> RDD
scala> val rdd1 = sc.textFile("/usr/local/tmp_files/test_WordCount.txt")
rdd1: org.apache.spark.rdd.RDD[String] = /usr/local/tmp_files/test_WordCount.txt MapPartitionsRDD[12] at textFile at <console>:24
scala> 1+1
res2: Int = 2
scala> rdd1.collect
res3: Array[String] = Array(I love Beijing, I love China, Beijing is the capital of China)
scala> val rdd2 = rdd1.flatMap(_.split(" "))
rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[13] at flatMap at <console>:26
scala> rdd2.collect
res4: Array[String] = Array(I, love, Beijing, I, love, China, Beijing, is, the, capital, of, China)
scala> val rdd3 = rdd2.map((_,1))
rdd3: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[14] at map at <console>:28
scala> rdd3.collect
res5: Array[(String, Int)] = Array((I,1), (love,1), (Beijing,1), (I,1), (love,1), (China,1), (Beijing,1), (is,1), (the,1), (capital,1), (of,1), (China,1))
scala> val rdd4 = rdd3.reduceByKey(_+_)
rdd4: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[15] at reduceByKey at <console>:30
scala> rdd4.collect
res6: Array[(String, Int)] = Array((is,1), (love,2), (capital,1), (Beijing,2), (China,2), (I,2), (of,1), (the,1))
RDD 弹性分布式数据集
(1)依赖关系 : 宽依赖和窄依赖
(2)算子:
函数:
Transformation : 延时计算 map flatMap textFile
Action : 立即触发计算 collect
说明:scala复习
(*)flatten:把嵌套的结果展开
scala> List(List(2,4,6,8,10),List(1,3,5,7,9)).flatten
res21: List[Int] = List(2, 4, 6, 8, 10, 1, 3, 5, 7, 9)
(*)flatmap : 相当于一个 map + flatten
scala> var myList = List(List(2,4,6,8,10),List(1,3,5,7,9))
myList: List[List[Int]] = List(List(2, 4, 6, 8, 10), List(1, 3, 5, 7, 9))
scala> myList.flatMap(x=>x.map(_*2))
res22: List[Int] = List(4, 8, 12, 16, 20, 2, 6, 10, 14, 18)
myList.flatMap(x=>x.map(_*2))
执行过程:
1、将 List(2, 4, 6, 8, 10), List(1, 3, 5, 7, 9) 调用 map(_*2) 方法。x 代表一个List
2、flatten
3、在IDE中开发scala版本和Java版本的WorkCount。
(1)scala版本的WordCount
新建一个工程,把jar引入到工程中。
export jar 点击下一步下一步,不需要设置main class
把jar上传到服务器上。
spark-submit --master spark://node3:7077 --class day1025.MyWordCount /usr/local/tmp_files/Demo1.jar hdfs://node2:8020/tmp_files/test_WordCount.txt hdfs://node2:8020/output/1025/demo1