性能--曲线拐点模型分析
分析思路:
1、X轴代表并发用户数,Y轴代表资源利用率、吞吐量、响应时间。X轴与Y轴区域从左往右分别是轻压力区、重压力区、拐点区。
2、随着并发用户数的增加,在轻压力区的响应时间变化不大,比较平缓,进入重压力区后呈现增长的趋势,最后进入拐点区后倾斜率增大,响应时间急剧增加。
3、随着并发用户数的增加,吞吐量增加,进入重压力区后逐步平稳,到达拐点区后急剧下降,说明系统已经达到了处理极限,有点扛不住。资源利用率逐步上升,最后达到饱和状态。
4、随着并发用户数增加,吞吐量与资源利用率增加,说明系统在积极处理,所以响应时间增加得并不明显,处于比较好的状态,但是随着并发用户数的持续增加,压力也在持续加大,吞吐量与资源利用率都达到了饱和,随后吞吐量急剧下降,造成响应时间急剧增长。轻压力区和重压力区的交界点是系统的最佳并发用户数,因为各种资源都利用的充分,响应也很快;而重压力区与拐点区的交界点就是系统的最大并发用户数,因为超过这个点,系统性能将会急剧下降甚至崩溃。
容量计算
以一网站性能测试为案例:
1. 通过分析运营数据,可以知道当前系统每小时处理的PV数
2. 通过负载测试,可以知道系统每小时最大处理的PV数
即整理得
系统每小时PV处理剩余量 = 系统每小时最大处理的PV数 — 系统每小时处理的PV数
假设该网站用户负载基本呈线性增长,现有系统用户数为70万,根据运营推广计划,1年内该网站发展用户将达到1000万,即增长了14倍。即整理得:
系统每小时PV处理增加量 = 当前系统每小时处理的PV数 * 14 — 当前系统每小时处理的PV数
每天系统负载增加率 = 100% / 365 = 2.74 % (备注:此处将未来系统用户数达到1000万的负载定义为 100% )
系统每天PV处理增加量 = 系统每小时PV处理增加量 * 每天系统负载增加率 * 24
所以,我们可以知道在正常负载条件下:
系统可支持正常运行天数 = 系统每小时PV处理剩余量 * 24 / 系统每天PV处理增加量
假设该网站后续部署升级天数已知,这样我们可以知道提前升级的天数:
系统可支持正常运行天数 — 部署升级天数
总结如下:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?