Python使用PDFMiner解析PDF
近期在做爬虫时有时会遇到网站只提供pdf的情况,这样就不能使用scrapy直接抓取页面内容了,只能通过解析PDF的方式处理,目前的解决方案大致只有pyPDF和PDFMiner。因为据说PDFMiner更适合文本的解析,而我需要解析的正是文本,因此最后选择使用PDFMiner(这也就意味着我对pyPDF一无所知了)。
首先说明的是解析PDF是非常蛋疼的事,即使是PDFMiner对于格式不工整的PDF解析效果也不怎么样,所以连PDFMiner的开发者都吐槽PDF is evil. 不过这些并不重要。官方文档在此:http://www.unixuser.org/~euske/python/pdfminer/index.html
一.安装:
1.首先下载源文件包 http://pypi.python.org/pypi/pdfminer/,解压,然后命令行安装即可:python setup.py install
2.安装完成后使用该命令行测试:pdf2txt.py samples/simple1.pdf,如果显示以下内容则表示安装成功:
Hello World Hello World H e l l o W o r l d H e l l o W o r l d
3.如果要使用中日韩文字则需要先编译再安装:
# make cmap
python tools/conv_cmap.py pdfminer/cmap Adobe-CNS1 cmaprsrc/cid2code_Adobe_CNS1.txtreading 'cmaprsrc/cid2code_Adobe_CNS1.txt'...writing 'CNS1_H.py'......(this may take several minutes)
# python setup.py install
二.使用
由于解析PDF是一件非常耗时和内存的工作,因此PDFMiner使用了一种称作lazy parsing的策略,只在需要的时候才去解析,以减少时间和内存的使用。要解析PDF至少需要两个类:PDFParser 和 PDFDocument,PDFParser 从文件中提取数据,PDFDocument保存数据。另外还需要PDFPageInterpreter去处理页面内容,PDFDevice将其转换为我们所需要的。PDFResourceManager用于保存共享内容例如字体或图片。
Figure 1. Relationships between PDFMiner classes
比较重要的是Layout,主要包括以下这些组件:
LTPage
Represents an entire page. May contain child objects like LTTextBox, LTFigure, LTImage, LTRect, LTCurve and LTLine.
LTTextBox
Represents a group of text chunks that can be contained in a rectangular area. Note that this box is created by geometric analysis and does not necessarily represents a logical boundary of the text. It contains a list of LTTextLine objects. get_text() method returns the text content.
LTTextLine
Contains a list of LTChar objects that represent a single text line. The characters are aligned either horizontaly or vertically, depending on the text's writing mode. get_text() method returns the text content.
LTChar
LTAnno
Represent an actual letter in the text as a Unicode string. Note that, while a LTChar object has actual boundaries, LTAnno objects does not, as these are "virtual" characters, inserted by a layout analyzer according to the relationship between two characters (e.g. a space).
LTFigure
Represents an area used by PDF Form objects. PDF Forms can be used to present figures or pictures by embedding yet another PDF document within a page. Note that LTFigure objects can appear recursively.
LTImage
Represents an image object. Embedded images can be in JPEG or other formats, but currently PDFMiner does not pay much attention to graphical objects.
LTLine
Represents a single straight line. Could be used for separating text or figures.
LTRect
Represents a rectangle. Could be used for framing another pictures or figures.
LTCurve
Represents a generic Bezier curve.
Figure 2. Layout objects and its tree structure
官方文档给了几个Demo但是都过于简略,虽然给了一个详细一些的Demo,但链接地址是旧的现在已经失效,不过最终还是找到了新的地址:http://denis.papathanasiou.org/posts/2010.08.04.post.html
这个Demo就比较详细了,源码如下:
1 #!/usr/bin/python 2 3 import sys 4 import os 5 from binascii import b2a_hex 6 7 8 ### 9 ### pdf-miner requirements 10 ### 11 12 from pdfminer.pdfparser import PDFParser 13 from pdfminer.pdfdocument import PDFDocument, PDFNoOutlines 14 from pdfminer.pdfpage import PDFPage 15 from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter 16 from pdfminer.converter import PDFPageAggregator 17 from pdfminer.layout import LAParams, LTTextBox, LTTextLine, LTFigure, LTImage, LTChar 18 19 def with_pdf (pdf_doc, fn, pdf_pwd, *args): 20 """Open the pdf document, and apply the function, returning the results""" 21 result = None 22 try: 23 # open the pdf file 24 fp = open(pdf_doc, 'rb') 25 # create a parser object associated with the file object 26 parser = PDFParser(fp) 27 # create a PDFDocument object that stores the document structure 28 doc = PDFDocument(parser, pdf_pwd) 29 # connect the parser and document objects 30 parser.set_document(doc) 31 # supply the password for initialization 32 33 if doc.is_extractable: 34 # apply the function and return the result 35 result = fn(doc, *args) 36 37 # close the pdf file 38 fp.close() 39 except IOError: 40 # the file doesn't exist or similar problem 41 pass 42 return result 43 44 45 ### 46 ### Table of Contents 47 ### 48 49 def _parse_toc (doc): 50 """With an open PDFDocument object, get the table of contents (toc) data 51 [this is a higher-order function to be passed to with_pdf()]""" 52 toc = [] 53 try: 54 outlines = doc.get_outlines() 55 for (level,title,dest,a,se) in outlines: 56 toc.append( (level, title) ) 57 except PDFNoOutlines: 58 pass 59 return toc 60 61 def get_toc (pdf_doc, pdf_pwd=''): 62 """Return the table of contents (toc), if any, for this pdf file""" 63 return with_pdf(pdf_doc, _parse_toc, pdf_pwd) 64 65 66 ### 67 ### Extracting Images 68 ### 69 70 def write_file (folder, filename, filedata, flags='w'): 71 """Write the file data to the folder and filename combination 72 (flags: 'w' for write text, 'wb' for write binary, use 'a' instead of 'w' for append)""" 73 result = False 74 if os.path.isdir(folder): 75 try: 76 file_obj = open(os.path.join(folder, filename), flags) 77 file_obj.write(filedata) 78 file_obj.close() 79 result = True 80 except IOError: 81 pass 82 return result 83 84 def determine_image_type (stream_first_4_bytes): 85 """Find out the image file type based on the magic number comparison of the first 4 (or 2) bytes""" 86 file_type = None 87 bytes_as_hex = b2a_hex(stream_first_4_bytes) 88 if bytes_as_hex.startswith('ffd8'): 89 file_type = '.jpeg' 90 elif bytes_as_hex == '89504e47': 91 file_type = '.png' 92 elif bytes_as_hex == '47494638': 93 file_type = '.gif' 94 elif bytes_as_hex.startswith('424d'): 95 file_type = '.bmp' 96 return file_type 97 98 def save_image (lt_image, page_number, images_folder): 99 """Try to save the image data from this LTImage object, and return the file name, if successful""" 100 result = None 101 if lt_image.stream: 102 file_stream = lt_image.stream.get_rawdata() 103 if file_stream: 104 file_ext = determine_image_type(file_stream[0:4]) 105 if file_ext: 106 file_name = ''.join([str(page_number), '_', lt_image.name, file_ext]) 107 if write_file(images_folder, file_name, file_stream, flags='wb'): 108 result = file_name 109 return result 110 111 112 ### 113 ### Extracting Text 114 ### 115 116 def to_bytestring (s, enc='utf-8'): 117 """Convert the given unicode string to a bytestring, using the standard encoding, 118 unless it's already a bytestring""" 119 if s: 120 if isinstance(s, str): 121 return s 122 else: 123 return s.encode(enc) 124 125 def update_page_text_hash (h, lt_obj, pct=0.2): 126 """Use the bbox x0,x1 values within pct% to produce lists of associated text within the hash""" 127 128 x0 = lt_obj.bbox[0] 129 x1 = lt_obj.bbox[2] 130 131 key_found = False 132 for k, v in h.items(): 133 hash_x0 = k[0] 134 if x0 >= (hash_x0 * (1.0-pct)) and (hash_x0 * (1.0+pct)) >= x0: 135 hash_x1 = k[1] 136 if x1 >= (hash_x1 * (1.0-pct)) and (hash_x1 * (1.0+pct)) >= x1: 137 # the text inside this LT* object was positioned at the same 138 # width as a prior series of text, so it belongs together 139 key_found = True 140 v.append(to_bytestring(lt_obj.get_text())) 141 h[k] = v 142 if not key_found: 143 # the text, based on width, is a new series, 144 # so it gets its own series (entry in the hash) 145 h[(x0,x1)] = [to_bytestring(lt_obj.get_text())] 146 147 return h 148 149 def parse_lt_objs (lt_objs, page_number, images_folder, text=[]): 150 """Iterate through the list of LT* objects and capture the text or image data contained in each""" 151 text_content = [] 152 153 page_text = {} # k=(x0, x1) of the bbox, v=list of text strings within that bbox width (physical column) 154 for lt_obj in lt_objs: 155 if isinstance(lt_obj, LTTextBox) or isinstance(lt_obj, LTTextLine): 156 # text, so arrange is logically based on its column width 157 page_text = update_page_text_hash(page_text, lt_obj) 158 elif isinstance(lt_obj, LTImage): 159 # an image, so save it to the designated folder, and note its place in the text 160 saved_file = save_image(lt_obj, page_number, images_folder) 161 if saved_file: 162 # use html style <img /> tag to mark the position of the image within the text 163 text_content.append('<img src="'+os.path.join(images_folder, saved_file)+'" />') 164 else: 165 print >> sys.stderr, "error saving image on page", page_number, lt_obj.__repr__ 166 elif isinstance(lt_obj, LTFigure): 167 # LTFigure objects are containers for other LT* objects, so recurse through the children 168 text_content.append(parse_lt_objs(lt_obj, page_number, images_folder, text_content)) 169 170 for k, v in sorted([(key,value) for (key,value) in page_text.items()]): 171 # sort the page_text hash by the keys (x0,x1 values of the bbox), 172 # which produces a top-down, left-to-right sequence of related columns 173 text_content.append(''.join(v)) 174 175 return '\n'.join(text_content) 176 177 178 ### 179 ### Processing Pages 180 ### 181 182 def _parse_pages (doc, images_folder): 183 """With an open PDFDocument object, get the pages and parse each one 184 [this is a higher-order function to be passed to with_pdf()]""" 185 rsrcmgr = PDFResourceManager() 186 laparams = LAParams() 187 device = PDFPageAggregator(rsrcmgr, laparams=laparams) 188 interpreter = PDFPageInterpreter(rsrcmgr, device) 189 190 text_content = [] 191 for i, page in enumerate(PDFPage.create_pages(doc)): 192 interpreter.process_page(page) 193 # receive the LTPage object for this page 194 layout = device.get_result() 195 # layout is an LTPage object which may contain child objects like LTTextBox, LTFigure, LTImage, etc. 196 text_content.append(parse_lt_objs(layout, (i+1), images_folder)) 197 198 return text_content 199 200 def get_pages (pdf_doc, pdf_pwd='', images_folder='/tmp'): 201 """Process each of the pages in this pdf file and return a list of strings representing the text found in each page""" 202 return with_pdf(pdf_doc, _parse_pages, pdf_pwd, *tuple([images_folder])) 203 204 a = open('a.txt','a') 205 for i in get_pages('/home/jamespei/nova.pdf'): 206 a.write(i) 207 a.close()
这段代码重点在于第128行,可以看到PDFMiner是一种基于坐标来解析的框架,PDF中能解析的组件全都包括上下左右边缘的坐标,如x0 = lt_obj.bbox[0]就是lt_obj元素的左边缘的坐标,同理x1则为右边缘。以上代码的意思就是把所有x0且x1的坐标相差在20%以内的元素分成一组,这样就实现了从PDF文件中定向抽取内容。
---------------------------补充-------------------------
有一个需要注意的地方,在解析有些PDF的时候会报这样的异常:pdfminer.pdfdocument.PDFEncryptionError: Unknown algorithm: param={'CF': {'StdCF': {'Length': 16, 'CFM': /AESV2, 'AuthEvent': /DocOpen}}, 'O': '\xe4\xe74\xb86/\xa8)\xa6x\xe6\xa3/U\xdf\x0fWR\x9cPh\xac\xae\x88B\x06_\xb0\x93@\x9f\x8d', 'Filter': /Standard, 'P': -1340, 'Length': 128, 'R': 4, 'U': '|UTX#f\xc9V\x18\x87z\x10\xcb\xf5{\xa7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', 'V': 4, 'StmF': /StdCF, 'StrF': /StdCF}
从字面意思来看是因为这个PDF是一个加密的PDF,所以无法解析 ,但是如果直接打开PDF却是可以的并没有要求输密码什么的,原因是这个PDF虽然是加过密的,但密码是空,所以就出现了这样的问题。
解决这个的问题的办法是通过qpdf命令来解密文件(要确保已经安装了qpdf),要想在python中调用该命令只需使用call即可:
1 from subprocess import call 2 call('qpdf --password=%s --decrypt %s %s' %('', file_path, new_file_path), shell=True)
其中参数file_path是要解密的PDF的路径,new_file_path是解密后的PDF文件路径,然后使用解密后的文件去做解析就OK了