MapReduce的reduce函数里的key用的是同一个引用

最近写MapReduce程序,出现了这么一个问题,程序代码如下:


 1 package demo;
 2 
 3 import java.io.IOException;
 4 import java.util.HashMap;
 5 import java.util.Map;
 6 import java.util.Map.Entry;
 7 
 8 import org.apache.hadoop.fs.FSDataOutputStream;
 9 import org.apache.hadoop.fs.FileSystem;
10 import org.apache.hadoop.fs.Path;
11 import org.apache.hadoop.io.IntWritable;
12 import org.apache.hadoop.io.Text;
13 import org.apache.hadoop.mapreduce.Reducer;
14 
15 public class ReducerDemo extends Reducer<Text, IntWritable, Text, IntWritable>{
16 
17     private FileSystem fs = null;
18     private FSDataOutputStream outs = null;
19     public Map<Text, Integer> wordNumMap = new HashMap<Text, Integer>();
20     
21 
22     
23     @Override
24     protected void setup(Context context)
25             throws IOException, InterruptedException {
26         String logFile = context.getConfiguration().get(HdpDemo.LOG_FILE);
27         fs = FileSystem.get(context.getConfiguration());
28         if(null != logFile){
29             int taskId = context.getTaskAttemptID().getTaskID().getId();
30             logFile += ("_"+taskId);
31             outs = fs.create(new Path(logFile));
32         }
33     }
34     
35 /*    public void reduce(Text key, IntWritable value, Context context){
36         
37     }*/
38 
39     public void reduce(Text key, Iterable<IntWritable> numberIter, Context context)
40             throws IOException, InterruptedException {
41         Text word = key;
42         Integer currNum = wordNumMap.get(word);
43         if(null == currNum){
44             currNum = 0;
45         }
46         for(IntWritable num:numberIter){
47             currNum += num.get();
48         }
49         wordNumMap.put(word, currNum);
50 
51     }
52     
53     @Override
54     protected void cleanup(Context context)
55             throws IOException, InterruptedException {
56         for(Entry<Text, Integer> entry : wordNumMap.entrySet()){
57             IntWritable num = new IntWritable(entry.getValue());
58             context.write(entry.getKey(), num);
59         }
60         outs.close();
61     }
62 
63     private void log(String content) throws IOException{
64         if(null != outs){
65             outs.write(content.getBytes());
66         }
67     }
68 
69 }

 

 

这是个单词统计的reducer类,按理说打印出来的结果应该是如下结果:

world   2
ccc     2
of      1
best    1
the     1
is      1
bbb     2
james   2
ddd     2
hello   2
aaa     1

而实际上的打印结果却为:

world:2
world:2
world:1
world:1
world:1
world:1
world:2
world:2
world:2
world:2
world:1

 

原因分析如下:

Hadoop的MapReduce框架每次调用reducer的reduce函数,代码中的第39行,每次传入的key都是对同一个地址的引用,导致了插入wordNumMap中的那些key都被修改了。

而如果把第41行的

Text word = key;

改为

Text word = new Text();
word.set(key);

这样结果就正确了,也印证了我的猜测。

 

posted on 2014-11-05 18:53  大油蛙  阅读(975)  评论(0编辑  收藏  举报

导航