压缩感知简介
Nyquist采样定理(香农采样定理)指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。基于此,压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。
压缩感知(压缩传感,Compressive Sensing, Compressed sensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D. Donoho(美国科学院院士)、E. Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者)等人提出,自诞生之日起便极大地吸引了相关研究人员的关注。网站http://dsp.rice.edu/cs上可以获取大量相关的论文。
压缩感知理论为信号采集技术带来了革命性的突破,它采用非自适应线性投影来保持信号的原始结构,以远低于奈奎斯特频率对信号进行采样,通过数值最优化问题准确重构出原始信号。压缩感知理论在信号获取的同时,就对数据进行适当地压缩,而传统的信号获取和处理过程主要包括采样、压缩、传输和解压缩四个部分,其采样过程必须遵循奈奎斯特采样定率,这种方式采样数据量大,先采样后压缩,浪费了大量的传感时间和存储空间,相对而言,压缩传感理论针对可稀疏表示的信号,能够将数据采集和数据压缩合二为一,这使其在信号处理领域有着突出的优点和广阔的应用前景。
压缩感知的核心思想是压缩和采样合并进行,并且测量值远小于传统采样方法的数据量,突破了香农采样定理的瓶颈,使高分辨率的信号采集成为可能。