OS创建页目录和页
;开始创建页目录项(PDE)
.create_pde: ; 创建Page Directory Entry
mov eax, PAGE_DIR_TABLE_POS ; PAGE_DIR_TABLE_POS = 0x100000
add eax, 0x1000 ; 此时eax为第一个页表的位置及属性
mov ebx, eax ; 此处为ebx赋值,是为.create_pte做准备,ebx为基址。
; 下面将页目录项0和0xc00都存为第一个页表的地址,
; 一个页表可表示4MB内存,这样0xc03fffff以下的地址和0x003fffff以下的地址都指向相同的页表,
; 这是为将地址映射为内核地址做准备
or eax, PG_US_U | PG_RW_W | PG_P ; 页目录项的属性RW和P位为1,US为1,表示用户属性,所有特权级别都可以访问.
; 第1个目录项,在页目录表中的第0个目录项写入第一个页表的位置(0x101000)及属性(7)
mov [PAGE_DIR_TABLE_POS + 0x0], eax
; 一个页表项占用4字节,0xc00表示第768个页表占用的目录项,0xc00以上的目录项用于内核空间,
;页目录第768项指向第一个页表
mov [PAGE_DIR_TABLE_POS + 0xc00], eax
; 也就是页表的0xc0000000~0xffffffff共计1G属于内核,0x0~0xbfffffff共计3G属于用户进程.
sub eax, 0x1000
; 使最后一个目录项指向页目录表自己的地址
mov [PAGE_DIR_TABLE_POS + 4092], eax
;下面创建页表项(PTE)
;把1M低端内存存储在第一页目录所指向的页表0~页表255内,每页4K
mov ecx, 256 ; 1M低端内存 / 每页大小4k = 256
mov esi, 0
mov edx, PG_US_U | PG_RW_W | PG_P ; 属性为7,US=1,RW=1,P=1
.create_pte: ; 创建Page Table Entry
mov [ebx+esi*4],edx ; 此时的ebx已经在上面通过eax赋值为0x101000,也就是第一个页表的地址
add edx,4096
inc esi
loop .create_pte
;创建内核其它页表的PDE
mov eax, PAGE_DIR_TABLE_POS
add eax, 0x2000 ; 此时eax为第二个页表的位置
or eax, PG_US_U | PG_RW_W | PG_P ; 页目录项的属性US,RW和P位都为1
mov ebx, PAGE_DIR_TABLE_POS
mov ecx, 254 ; 范围为第769~1022的所有目录项数量
mov esi, 769
.create_kernel_pde:
mov [ebx+esi*4], eax
inc esi
add eax, 0x1000
loop .create_kernel_pde
ret
指定了物理地址1M的页表 ,具体示意图如下:
关于页目录表:
1、 每个进程有一个属于自己的页目录表,可通过 CR3 寄存器找到
2、 而内核也有一个独立于其它进程的页目录表[上面代码模拟了内核的页目录表],保存在 swapper_pg_dir[] 数组中
3、 当进程切换的时候,只需要将新进程的页目录把地址加载到 CR3 寄存器中即可
4、 创建一个新进程的时候,需要为它分配一个 page,作为页目录表,并将 swapper_pg_dir[] 的高 256 项拷贝过来[上面代码模拟了内核的页目录表769-1023项],低 768 项则清0
//===============================扩展===============================================
上图反映了如下信息:
1、 进程的4G 线性空间被划分成三个部分:进程空间(0-3G)、内核直接映射空间(3G– high_memory)、内核动态映射空间(VMALLOC_START - VMALLOC_END)
2、 三个空间使用同一张页目录表,通过 CR3 可找到此页目录表。但不同的空间在页目录表中页对应不同的项,因此互相不冲突
3、 内核初始化以后,根据实际物理内存的大小,计算出 high_memory、VMALLOC_START、VMALLOC_END 的值。并为“内核直接映射”空间建立好映射关系,所有的物理内存都可以通过此空间进行访问。
4、 “进程空间”和“内核动态映射空间”的映射关系是动态建立的(通过缺页异常)
假设在有三个线性地址 addr1, addr2, addr3 ,分别属于三个线性空间不同部分(0-3G、3G-high_memory、vmalloc_start-vmalloc_end),但是最终都映射到物理页面1:
1、 三个地址对应不同的页表和页表项
2、 但是页表项的高20bit肯定是1,表示物理页面的索引号是1
3、 同时,根据高20bit,可以从 mem_map[]中找到对应的struct page结构,struct page 用于管理实际的物理页面(就是实际物理页面的物理地址了,到这里就不绕弯子了,顺便想到高速缓冲的匹配命中操作是用哈希表,换算出的要访问的实际物理地址拿到哈希表的输入计算一下哈希值,看看有没命中)(红线)
4、 从线性地址最终的,根据页目录表,页表,可以找到物理地址
5、 struct page和物理地址之间很容易互相转换
6、 从物理地址,可以很容易的反推出在内核直接映射空间的线性地址(蓝线)。要想得到在进程空间或者内核动态映射空间的对应的线性地址,则需要遍历相应的“虚存区间”链表。
关于页目录表:
1、 每个进程有一个属于自己的页目录表,可通过 CR3 寄存器找到
2、 而内核也有一个独立于其它进程的页目录表,保存在 swapper_pg_dir[] 数组中
3、 当进程切换的时候,只需要将新进程的页目录把地址加载到 CR3 寄存器中即可
4、 创建一个新进程的时候,需要为它分配一个 page,作为页目录表,并将swapper_pg_dir[] 的高256项拷贝过来,低768项则清0
linux0.11版本,所有进程共享同一个页目录而各自使用不同的页表,该共享的页目录就放在物理地址最前面的4k
//===============================END===============================================
地址转换图:
程序运行时虚拟地址转化为物理地址过程: