Python几种常用的测试框架

Python几种常用的测试框架

一、测试的常用规则

  1. 一个测试单元必须关注一个很小的功能函数,证明它是正确的;
  2. 每个测试单元必须是完全独立的,必须能单独运行。这样意味着每一个测试方法必须重新加载数据,执行完毕后做一些清理工作。通常通过setUp()和setDown()方法处理;
  3. 编写执行快速的测试代码。在某些情况下,测试需要加载复杂的数据结构,而且每次执行的时候都要重新加载,这个时候测试执行会很慢。因此,在这种情况下,可以将这种测试放置一个后台的任务中。
  4. 采用测试工具并且学着怎么使用它。
  5. 在编写代码前执行完整的测试,而且在编写代码后再重新执行一次。这样能保证你后来编写的代码不会破坏任何事情;
  6. 在提交代码前执行完整的测试;
  7. 如果在开发期间被打断了工作,写一个打断的单元测试,关于你下一步将要开发的。当你回来工作时,你能知道上一步开发到的指针;
  8. 单元测试函数使用长的而且具有描述性的名字。在正式执行代码中,可能使用square()或sqr()取名,但是在测试函数中,你必须取像test_square_of_number_2()、test_square_negativer_number()这些名字,这些名字描述更加清楚;
  9. 测试代码必须具有可读性;
  10. 单元测试对新进的开发人员来说是工作指南。

二、常见的测试框架

2.1 Unittest

   unittest是Python内置的标准类库。它的API跟Java的JUnit、.net的NUnit,C++的CppUnit很相似。

   通过继承unittest.TestCase来创建一个测试用例。

  具体请参考文档

  举个例:

复制代码
import unittest

def fun(x):
    return x + 1

class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(fun(3), 4)
复制代码

执行后成功。

但是,如果将期望的结果改成5,则执行的结果如下图所示:

 

image

 

2.2 Doctest

     doctest 模块会搜索那些看起来像交互式会话的 Python 代码片段,然后尝试执行并验证结果.即使从没接触过 doctest,我们也可以从这个名字中窥到一丝端倪。“它看起来就像代码里的文档字符串(docstring)一样” 如果你这么想的话,就已经对了一半了。

     举个例子:

复制代码
def square(x):
    """Squares x.

    >>> square(2)
    4
    >>> square(-2)
    4
    >>> square(5)
    25
    """

    return x * x

if __name__ == '__main__':
    import doctest
    doctest.testmod()
复制代码

     当执行该代码后,会执行文档内>>> 后面的测试代码,并与下一行的结果进行比对。执行的结果如下:

image

     但是,如果我们把结果改一下,square(2)的结果改成5,测试代码如下:

复制代码
def square(x):
    """Squares x.

    >>> square(2)
    5
    >>> square(-2)
    4
    >>> square(5)
    25
    """

    return x * x

if __name__ == '__main__':
    import doctest
    doctest.testmod()
复制代码

     执行的测试结果如下所示:

image

 

     

2.3 py.test

   py.test是unittest的替代工具。

   尽管它是一个功能丰富、灵活的测试框架,但是它的语法很简单。创建一个单元测试就像编写一个模块一样。相比unittest,实现相同的测试功能,py.test做的事情更少。

   py.test详细文档

   首先,安装py.test

 pip install pytest

  第二步,编写测试代码

def func(x):
    return x + 1

def test_answer():
    assert func(3) == 5

第三步,执行测试代码。

  •   找到pytest安装路径。
  • 用其所在的解析器(python.exe)执行test.py ,执行命令比如:

image

 

  执行的结果如下图所示:

image

 

2.4 Nose

      Nose是对unittest的扩展,使得python的测试更加简单。nose自动发现测试代码并执行,nose提供了大量的插件,比如测试输出的xUnitcompatible,覆盖报表等等。

     nose的详细文档:https://nose.readthedocs.org/en/latest/

     注意:nose本身是支持python3的,但是很多它的插件不支持。

          

2.5 tox

      最大的特色,是自动最测试环境的管理以及使用多个解析器配置进行测试。

     tox的详细文档:http://testrun.org/tox/latest/

 

 

2.6  Unittest2

     是unitest的升级版。对API进行了改善以及更好的诊断语法。

     unittest2的详细文档:https://pypi.python.org/pypi/unittest2

     首先,安装

     pip install unittest2

为了以后能在unittest与unittest2之间进行切换,最好的代码编写方式如下:

import unittest2 as unittest

class MyTest(unittest.TestCase):
    ...
 

2.7 mockunittest.mock是用来测试python的库。在python3.3版本以后,这个是一个标准库。 对老版本来说,使用pip install mock 进行安装。

   mock的精髓在于,你可以使用模拟的对象来替代你的系统的一部分,然后验证后续的执行是否正确。
   mock的详细文档:http://www.voidspace.org.uk/python/mock/    
 
  下一篇我们重点讲讲nose的使用方法。
posted @ 2021-09-03 20:08  Jacob高  阅读(376)  评论(0编辑  收藏  举报