handler机制
handler机制
概念
handler机制是一种异步通信机制,通常用于子线程中数据更新后,通知主线程UI更新。
handler运行框架图
从上面handler的运行框架图来看,为了完成handler整个流程,你必须按事先创建好四个东西:
handler、Message、MessageQueue和Looper,也许Looper从上图来看并不是必须的,因为遍历MessageQueue只是调用了一个静态方法而已,并没有实例化一个Looper对象,既然这么想,那我们看看Looper.Loop()源码就知道了:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper(); //获取了一个Looper对象
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
........
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
.......
msg.recycleUnchecked();
}
}
上面第6行代码就会获得一个Looper实例,所以你还需要一个Looper实例的,那么你就会有一个疑问了,Looper对象哪里创建的呢?解决的办法就是跟踪源码myLooper()
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
上面代码就是利用ThreadLocal获取一个局部变量ThreadLocal,而这个局部变量也是在ThreadLocal.set(Object)设置进去的,那么又是在哪个地方设置进去的呢,继续跟踪代码,经过一番查找,我们在Looper类里面有这么几个方法:
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
对,没错,就是这个方法;这个方法创建Looper对象;并且可以看出:ThreadLocal局部变量一经设置后就不允许再次设置,所以这个方法只能在同一个线程里面只能调用一次
跟踪到这里,Looper算是弄明白了,不难总结出,Looper这个对象必须要在handler发送消息之前就事先创建好,并且也只能创建一次,不然你使用Looper.Loop()无法进行消息遍历的,但是通常我们在Activity里面使用Handler的时候,并没有调用Looper.prepare()去创建Looper,这是怎么回事呢?
答案就是:Activity通常是在UI线程中,但却不是UI线程的入口,UI线程入口是ActivityThread.main()这里,这个类里面帮我们去创建了Looper,查看源码就可以知道:
public static void main(String[] args) {
…………
Looper.prepareMainLooper(); //创建Looper并ThreadLocal.set(Looper)绑定
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) { //创建handler
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread"));
}
// End of event ActivityThreadMain.
Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
Looper.loop(); //looper遍历队列
throw new RuntimeException("Main thread loop unexpectedly exited");
}
从这儿我们就可以看出handler的执行步骤了:
1. 创建Looper --- Looper.prepare()
2. 创建Handler对象 --- new handler
3. 遍历队列 --- Looper.loop()
总结: UI线程中,你只需要执行第二步就可以了,如果是在非UI线程,你就必须三步都执行才行
handler的使用流程,已经分析清楚了。
但是内部如何发送、Looper怎么遍历以及如何接受消息并处还不是很清楚,下面继续分析来搞明白这些问题:
创建Looper
这个好理解,不管是UI线程还是非UI线程,最终都会去调用prepare()方法去new Looper()对象,那这个Looper对象里面有什么东西呢?看源码了解下:
final MessageQueue mQueue;
final Thread mThread;
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
Looper里面创建了MessageQueue和上面的连接起来了,Looper里面创建了MessageQueue,这个队列是一个链表结构的队列
Handler
handler用法我们一般是下面这两种方式来使用:
private Handler handler = new Handler(){
@Override
public void handleMessage(Message msg) {
//your code
}
};
handler.sendEmptyMessage(0); //send方式
handler.post(new Runnable() { //post方式
@Override
public void run() {
//your code
}
});
先看第一种send方式,源码:
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
这个好理解,继续:
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
这里,我们发现即使发送空的Message,Handler都会主动去创建Message,并且自行携带一个延时参数;
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
SystemClock.uptimeMillis()表示开机到现在的毫秒数,不包括睡眠时间,这里为什么要使用这个时间而不是用System.currentTimeMillis(),暂时我也无法理解,可能是因为handler通信有阻塞的关系?
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis); //消息入队
}
到这里也印证上面,如果你之前没有创建好Looper就直接使用handler,在这个方法里面就会跑出空队列MessageQueue的异常,mQueue是Handler的成员变量,这个变量在handler的构造方法里面通过Looper获取的
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里就会给Message的target赋值this,this就是指你发送的这个handler,后面的enqueueMessage就是消息入队了:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) { //同步
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when; //完整封装Message
Message p = mMessages; //消息的头节点
boolean needWake;
如果头结点为空,或者头结点的发送时间when大于当前节点时间,则把msg作为头结点
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) { //根据延时插入消息队列
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
(1)首先判断消息的接收者是否赋值,如果没赋值消息就不知道发给谁了
(2)when值封装到Message里面去
(3)插入消息队列,根据延时长短插入进去,队列按照延时由短到长排列,最后消息取出来的时候也是先取短的,后取长的
到这步send方式的就完成了,post方式的情况和send方式大同小异,就是签名的消息封装不一样
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
private static Message getPostMessage(Runnable r, Object token) {
Message m = Message.obtain();
m.obj = token;
m.callback = r;
return m;
}
//
post方式底层也会产生一个Message,并把Runnable赋值给Message.callback对象,后面的sendMessageDelayed和send就是一样的了
handler发送总结:
(1)使用Handler之前一定要创建Looper对象,Looper.prepare(),创建Looper和MessageQueue
(2)new Handler的构造方法会去拿第一个步骤获取的Looper和MessageQueue
(3)send和post方式底层都会封装Message,只是Message内部成员赋值不同而已
(4)最终都会调用底层的sendMessageAtTime(msg,when)
(5)进入消息队列,根据延时when的长短
Looper.loop()遍历队列
//Looper.java
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
if (traceTag != 0) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
try {
msg.target.dispatchMessage(msg);
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
…………
msg.recycleUnchecked();
}
}
(1)queue.next()遍历取消息,这是一个阻塞方法
(2)取出消息后msg.target.dispatchMessage(msg)发送消息,target也就是之前在发送的时候设置的;queue.next()函数进入,如果没有消息或者消息时间还未到来,将会阻塞掉该线程,否则一直轮询会耗费CPU资源,关于如何阻塞,大致是以下原理:精确获取下一条消息的触发时间when,和当前时间相减也就是要阻塞的时间,阻塞主要是调用了Native层的Looper的阻塞方法,Native层的Looper主要是通过管道来实现监听消息队列变化,当消息入队时,如果入队消息处于队首,并且时间也触发了,也是调用Native层wake去唤醒另一边的读取线程;其native层的Looper主要是使用管道来通信,入队时,一有动作就通过管道通知给读取线程,让读取线程去执行自己的逻辑,但是我有一个疑问,这种管道通信其实也可以用其他的方式替代,并且也不一定使用Native层处理,完全可以在java层面实现,难道Android这样做是为了效率吗?
接收Message并处理
public void handleMessage(Message msg) {
}
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
从上面可以看出最终执行的有三种方式:
(1)handleCallback(msg); 这种方式就是我们使用post的方式
(2)mCallback.handleMessage(msg) 这种方式是我们使用Handler构造方法传递Callback方式使用的:
例如:public Handler(Looper looper, Callback callback, boolean async)
(3)handleMessage(msg); 最后这种就是我们在Activity写匿名内部类的时候用的,重写了handleMessage(msg)方法的
至此,handler的发送到接收方式就分析完了,如有错误,还请指正!
Android相关源码在此:
https://github.com/android/platform_frameworks_base/tree/master/core/java/android/os
Handler扩展
handler如何完成线程切换到主线程的???
子线程:new Hander(Looper.getMainLooper());
因为主线程Looper.loop()一开始就在主线程循环遍历,子线程只是同步方式往queue中添加Messgae消息,此时还在子线程,而由主线程遍历取出来后则自动运行在主线程
从上引出Handler在Activity的内存泄漏问题分析:
Handler消息发送涉及到两个线程的处理,通常我们在子线程发送消息sendMessage,然后插入到MessageQueue,然后在DispatchMessage将消息分发处理;这里前两个步骤在子线程,最后一步如果是Activity处理则是主线程;
试想这样一个场景,子线程发送消息在10s后处理,而Activity在5s的时候就返回finish了,这个时候Activity就会内存泄漏,因为我们编写Handler在Activity里面时一般都是内部类,所以handler持有Activity引用,而Handler则又被10s的Message持有引用,因为Message.target=Handler,而这个Message呢又被MessageQueue持有,而这个MessageQueue又被Looper持有,这个Looper呢?又在ActivityThread里面的成员变量mLooper所持有,这样ActivityThread算是始祖类了,声明周期超长,就导致Activity无法被释放了
取消Message消息发送
Handler提供了许多remove相关的message,主要是在MessageQueue里面,遍历Message链表每个节点,对比其中的target、what和object等参数,相同的消息都会删掉;对于延迟发送的消息,只要消息发送时间未到来都可以被移除
handler中的同步分隔栏
当在消息队列中某一个消息Message他的target为null时,它就是一个同步分隔栏,相当于一串消息中间的卡子,当时间走到同步消息栏时,卡子后面的普通message将不会被处理,而异步消息async可以被处理;同步分隔栏只能通过Looper的postSyncBarrier()插入消息,removeSyncBarrier删除消息;
它是一个过滤的作用,过滤掉同步消息,滤出异步消息
同步与异步消息
同步与异步的区别主要在于Message的flag标志位-异步标志和同步标志;我们可以通过Message.setAsynchronous设置
IdleHandler
IdleHandler是Handler的一个补充优化,用于处理消息队列为空的,没有任务的情况下,处理IdleHandler,提高性能;主要使用是以下方法:
Looper.myQueue().addIdleHandler(new IdleHandler() {
@Override
public boolean queueIdle() {
//你要处理的事情
return false;
}
});
注意返回参数,false执行一次后会被MessageQueue移除消息队列,而返回true则会一直执行,其背后实质原理就是讲IdleHandler加入到MessageQueue的一个数组中去,在没有Message时执行IdleHandler