httpserver,下面是rfc相关信息:

Format

If a Transfer-Encoding field with a value of chunked is specified in an HTTP message (either a request sent by a client or the response from the server), the body of the message consists of an unspecified number of chunks, a terminating last-chunk, an optional trailer of entity-header fields, and a final CRLF sequence.

Each chunk starts with the number of octets of the data it embeds expressed in hexadecimal followed by optional parameters (chunk extension) and a terminating CRLF (carriage return and line feed) sequence, followed by the chunk data. The chunk is terminated by CRLF. If chunk extensions are provided, the chunk size is terminated by a semicolon followed with the extension name and an optional equal sign and value.

The last chunk is a zero-length chunk, with the chunk size coded as 0, but without any chunk data section.

The final chunk may be followed by an optional trailer of additional entity-header fields that are normally delivered in the HTTP header to allow the delivery of data that can only be computed after all chunk data has been generated. The sender may indicate in a Trailer header field which additional fields it will send in the trailer after the chunks.

 

 

 

3.6.1 Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator, followed by an OPTIONAL trailer containing entity-header fields. This allows dynamically produced content to be transferred along with the information necessary for the recipient to verify that it has received the full message.

       Chunked-Body   = *chunk
                        last-chunk
                        trailer
                        CRLF
       chunk          = chunk-size [ chunk-extension ] CRLF
                        chunk-data CRLF
       chunk-size     = 1*HEX
       last-chunk     = 1*("0") [ chunk-extension ] CRLF
       chunk-extension= *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
       chunk-ext-name = token
       chunk-ext-val  = token | quoted-string
       chunk-data     = chunk-size(OCTET)
       trailer        = *(entity-header CRLF)

The chunk-size field is a string of hex digits indicating the size of the chunk. The chunked encoding is ended by any chunk whose size is zero, followed by the trailer, which is terminated by an empty line.

The trailer allows the sender to include additional HTTP header fields at the end of the message. The Trailer header field can be used to indicate which header fields are included in a trailer (see section 14.40).

A server using chunked transfer-coding in a response MUST NOT use the trailer for any header fields unless at least one of the following is true:

a)the request included a TE header field that indicates "trailers" is acceptable in the transfer-coding of the response, as described in section 14.39; or,

b)the server is the origin server for the response, the trailer fields consist entirely of optional metadata, and the recipient could use the message (in a manner acceptable to the origin server) without receiving this metadata. In other words, the origin server is willing to accept the possibility that the trailer fields might be silently discarded along the path to the client.

This requirement prevents an interoperability failure when the message is being received by an HTTP/1.1 (or later) proxy and forwarded to an HTTP/1.0 recipient. It avoids a situation where compliance with the protocol would have necessitated a possibly infinite buffer on the proxy.

An example process for decoding a Chunked-Body is presented in appendix 19.4.6.

All HTTP/1.1 applications MUST be able to receive and decode the "chunked" transfer-coding, and MUST ignore chunk-extension extensions they do not understand.

 

 

 

 

httpserver,下面是rfc相关信息:

首先是message 长度的部分:
4.4 Message Length

The transfer-length of a message is the length of the message-body as it appears in the message; that is, after any transfer-codings have been applied. When a message-body is included with a message, the transfer-length of that body is determined by one of the following (in order of precedence):

1.Any response message which "MUST NOT" include a message-body (such as the 1xx, 204, and 304 responses and any response to a HEAD request) is always terminated by the first empty line after the header fields, regardless of the entity-header fields present in the message.

2.If a Transfer-Encoding header field (section 14.41) is present and has any value other than "identity", then the transfer-length is defined by use of the "chunked" transfer-coding (section 3.6), unless the message is terminated by closing the connection.

3.If a Content-Length header field (section 14.13) is present, its decimal value in OCTETs represents both the entity-length and the transfer-length. The Content-Length header field MUST NOT be sent if these two lengths are different (i.e., if a Transfer-Encoding

  header field is present). If a message is received with both a
  Transfer-Encoding header field and a Content-Length header field,
  the latter MUST be ignored.

4.If the message uses the media type "multipart/byteranges", and the transfer-length is not otherwise specified, then this self- delimiting media type defines the transfer-length. This media type MUST NOT be used unless the sender knows that the recipient can parse it; the presence in a request of a Range header with multiple byte- range specifiers from a 1.1 client implies that the client can parse multipart/byteranges responses.

  A range header might be forwarded by a 1.0 proxy that does not
  understand multipart/byteranges; in this case the server MUST
  delimit the message using methods defined in items 1,3 or 5 of
  this section.

5.By the server closing the connection. (Closing the connection cannot be used to indicate the end of a request body, since that would leave no possibility for the server to send back a response.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a message-body MUST include a valid Content-Length header field unless the server is known to be HTTP/1.1 compliant. If a request contains a message-body and a Content-Length is not given, the server SHOULD respond with 400 (bad request) if it cannot determine the length of the message, or with 411 (length required) if it wishes to insist on receiving a valid Content-Length.

All HTTP/1.1 applications that receive entities MUST accept the "chunked" transfer-coding (section 3.6), thus allowing this mechanism to be used for messages when the message length cannot be determined in advance.

Messages MUST NOT include both a Content-Length header field and a non-identity transfer-coding. If the message does include a non- identity transfer-coding, the Content-Length MUST be ignored.

When a Content-Length is given in a message where a message-body is allowed, its field value MUST exactly match the number of OCTETs in the message-body. HTTP/1.1 user agents MUST notify the user when an invalid length is received and detected. 

然后是chunked encoding部分:
3.6 Transfer Codings

Transfer-coding values are used to indicate an encoding transformation that has been, can be, or may need to be applied to an entity-body in order to ensure "safe transport" through the network. This differs from a content coding in that the transfer-coding is a property of the message, not of the original entity.

  transfer-coding = "chunked" | transfer-extension
  transfer-extension = token *( ";" parameter )

Parameters are in the form of attribute/value pairs.

  parameter = attribute "=" value
  attribute = token
  value = token | quoted-string

All transfer-coding values are case-insensitive. HTTP/1.1 uses transfer-coding values in the TE header field (section 14.39) and in the Transfer-Encoding header field (section 14.41).

Whenever a transfer-coding is applied to a message-body, the set of transfer-codings MUST include "chunked", unless the message is terminated by closing the connection. When the "chunked" transfer- coding is used, it MUST be the last transfer-coding applied to the message-body. The "chunked" transfer-coding MUST NOT be applied more than once to a message-body. These rules allow the recipient to determine the transfer-length of the message (section 4.4).

Transfer-codings are analogous to the Content-Transfer-Encoding values of MIME [7], which were designed to enable safe transport of binary data over a 7-bit transport service. However, safe transport has a different focus for an 8bit-clean transfer protocol. In HTTP, the only unsafe characteristic of message-bodies is the difficulty in determining the exact body length (section 7.2.2), or the desire to encrypt data over a shared transport.

The Internet Assigned Numbers Authority (IANA) acts as a registry for transfer-coding value tokens. Initially, the registry contains the following tokens: "chunked" (section 3.6.1), "identity" (section 3.6.2), "gzip" (section 3.5), "compress" (section 3.5), and "deflate" (section 3.5).

New transfer-coding value tokens SHOULD be registered in the same way as new content-coding value tokens (section 3.5).

A server which receives an entity-body with a transfer-coding it does not understand SHOULD return 501 (Unimplemented), and close the connection. A server MUST NOT send transfer-codings to an HTTP/1.0 client.
3.6.1 Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, each with its own size indicator, followed by an OPTIONAL trailer containing entity-header fields. This allows dynamically produced content to be transferred along with the information necessary for the recipient to verify that it has received the full message.

  Chunked-Body = *chunk
  last-chunk
  trailer
  CRLF

  chunk = chunk-size [ chunk-extension ] CRLF
  chunk-data CRLF
  chunk-size = 1*HEX
  last-chunk = 1*("0") [ chunk-extension ] CRLF

  chunk-extension= *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
  chunk-ext-name = token
  chunk-ext-val = token | quoted-string
  chunk-data = chunk-size(OCTET)
  trailer = *(entity-header CRLF)

The chunk-size field is a string of hex digits indicating the size of the chunk. The chunked encoding is ended by any chunk whose size is zero, followed by the trailer, which is terminated by an empty line.

The trailer allows the sender to include additional HTTP header fields at the end of the message. The Trailer header field can be used to indicate which header fields are included in a trailer (see section 14.40).

A server using chunked transfer-coding in a response MUST NOT use the trailer for any header fields unless at least one of the following is true:

a)the request included a TE header field that indicates "trailers" is acceptable in the transfer-coding of the response, as described in section 14.39; or,

b)the server is the origin server for the response, the trailer fields consist entirely of optional metadata, and the recipient could use the message (in a manner acceptable to the origin server) without receiving this metadata. In other words, the origin server is willing to accept the possibility that the trailer fields might be silently discarded along the path to the client.

This requirement prevents an interoperability failure when the message is being received by an HTTP/1.1 (or later) proxy and forwarded to an HTTP/1.0 recipient. It avoids a situation where compliance with the protocol would have necessitated a possibly infinite buffer on the proxy.

An example process for decoding a Chunked-Body is presented in appendix 19.4.6.

All HTTP/1.1 applications MUST be able to receive and decode the "chunked" transfer-coding, and MUST ignore chunk-extension extensions they do not understand.

posted on 2010-12-10 14:40  Jacky  阅读(219)  评论(0编辑  收藏  举报