PAT 1066. Root of AVL Tree (25)
1066. Root of AVL Tree (25)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print ythe root of the resulting AVL tree in one line.
Sample Input 1:5 88 70 61 96 120Sample Output 1:
70Sample Input 2:
7 88 70 61 96 120 90 65Sample Output 2:
88
1 #include <iostream> 2 3 using namespace std; 4 5 struct Node 6 { 7 int value; 8 Node* left; 9 Node* right; 10 Node(){ left = right = nullptr; } 11 }; 12 13 int height(Node* root) 14 { 15 if (root == nullptr) 16 return -1; 17 else 18 { 19 int l = height(root->left); 20 int r = height(root->right); 21 return l > r ? l + 1 : r + 1; 22 } 23 } 24 25 Node* LL(Node* k1) 26 { 27 Node* k2; 28 29 k2 = k1->left; 30 k1->left = k2->right; 31 k2->right = k1; 32 33 return k2; 34 } 35 36 Node* RR(Node* k1) 37 { 38 Node* k2; 39 40 k2 = k1->right; 41 k1->right = k2->left; 42 k2->left = k1; 43 44 return k2; 45 } 46 47 Node* LR(Node* k3) 48 { 49 k3->left = RR(k3->left); 50 51 return LL(k3); 52 } 53 54 Node* RL(Node* k3) 55 { 56 k3->right = LL(k3->right); 57 58 return RR(k3); 59 } 60 61 Node* Insert(Node* root, int value) 62 { 63 if (root == nullptr) 64 { 65 Node* node = new Node; 66 node->value = value; 67 return node; 68 } 69 else if (value < root->value) 70 { 71 root->left = Insert(root->left, value); 72 if (height(root->left) - height(root->right) == 2) 73 { 74 if (value < root->left->value) 75 root = LL(root); 76 else 77 root = LR(root); 78 } 79 return root; 80 } 81 else 82 { 83 root->right = Insert(root->right, value); 84 if (height(root->right) - height(root->left) == 2) 85 { 86 if (value > root->right->value) 87 root = RR(root); 88 else 89 root = RL(root); 90 } 91 return root; 92 } 93 } 94 95 96 int main() 97 { 98 int n; 99 cin >> n; 100 101 Node* root = nullptr; 102 for (int i = 0; i < n; i++) 103 { 104 int value; 105 cin >> value; 106 root = Insert(root, value); 107 } 108 109 cout << root->value; 110 }