ElasticSearch之Shard request cache settings

对于查询操作,Elasticsearch提供了缓存特性来暂存结果。
对于相同条件的查询请求,在缓存中的数据失效前,响应后续的查询操作时可以直接从缓存中提取结果,有效降低检索操作的时延,提升检索数据时的体验。
提到缓存相关的特性,即要关注如下几点:

  • 缓存的开关
  • 缓存中的数据哪里来
  • 缓存占用的空间
  • 缓存中数据的老化机制
  • 缓存中的数据规模

缓存的开关

创建索引时,默认启用缓存,但可以在创建参数中将参数index.requests.cache.enable指定为false,从而关闭缓存。
命令样例如下:

curl -X PUT "https://localhost:9200/testindex_003?pretty" -H 'Content-Type: application/json' -d'
{
  "settings": {
    "index.requests.cache.enable": false
  }
}
' --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "acknowledged" : true,
  "shards_acknowledged" : true,
  "index" : "testindex_003"
}

检查索引testindex_003的参数,命令样例如下:

curl -X GET "https://localhost:9200/testindex_003/_settings?pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "testindex_003" : {
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "1",
        "provided_name" : "testindex_003",
        "creation_date" : "1702050678193",
        "requests" : {
          "cache" : {
            "enable" : "false"
          }
        },
        "number_of_replicas" : "1",
        "uuid" : "9r8VrKdURhqr1XJM8Z9egQ",
        "version" : {
          "created" : "8500003"
        }
      }
    }
  }
}

在索引创建完毕之后,可以通过Update index settings API修改开关的状态。
例如刚才在创建索引testindex_003时关闭了缓存,可以通过执行命令手工开启缓存。
命令样例如下:

curl -X PUT "https://localhost:9200/testindex_003/_settings?pretty" -H 'Content-Type: application/json' -d'
{
  "index.requests.cache.enable": true
}
' --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "acknowledged" : true
}

检查索引testindex_003的参数,命令样例如下:

curl -X GET "https://localhost:9200/testindex_003/_settings?pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "testindex_003" : {
    "settings" : {
      "index" : {
        "routing" : {
          "allocation" : {
            "include" : {
              "_tier_preference" : "data_content"
            }
          }
        },
        "number_of_shards" : "1",
        "provided_name" : "testindex_003",
        "creation_date" : "1702050678193",
        "requests" : {
          "cache" : {
            "enable" : "true"
          }
        },
        "number_of_replicas" : "1",
        "uuid" : "9r8VrKdURhqr1XJM8Z9egQ",
        "version" : {
          "created" : "8500003"
        }
      }
    }
  }
}

执行检索操作时,依据业务要求指定缓存的开关,比如禁止从缓存中提取数据,命令样例如下:

curl -X GET "https://localhost:9200/testindex_003/_search?request_cache=true&pretty" -H 'Content-Type: application/json' -d'
{
  "size": 0,
  "aggs": {
    "popular_colors": {
      "terms": {
        "field": "colors"
      }
    }
  }
}
' --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

缓存中的数据

假定启用了缓存特性,Elasticsearch节点处理检索请求时,执行如下操作:

  • 处理查询请求时,则使用查询条件作为关键字,从缓存中提取数据。
  • 假如可以从缓存中提取到相关记录,则返回这部分记录,本次处理完毕。
  • 假如没有从缓存中提取到相关记录,则执行检索操作。
  • 检索操作完毕,使用查询条件作为关键字,将处理结果缓存至缓存中。
  • 假如缓存空间不足,则使用LRU算法清理缓存中的记录,直至可用空间足够保存刚才的检索结果。
  • 返回检索结果。

上述为检索操作的一般流程,实际的执行流程以Elasticsearch的实现为准。

缓存占用的空间

缓存可占用的空间,默认值为Elasticsearch进程Java堆空间的%1
在节点的配置文件$ES_HOME/config/elasticsearch.yml中指定,配置样例如下:

indices.requests.cache.size: 2%

配置项indices.requests.cache.expire用于指定缓存中数据的生命周期。
考虑到Elasticsearch后台定期执行的Refresh操作会自动清理缓存中的过期数据,因此一般不需要配置indices.requests.cache.expire

清理缓存

手工清理缓存,命令样例如下:

curl -X POST "https://localhost:9200/testindex_001/_cache/clear?request=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "_shards" : {
    "total" : 2,
    "successful" : 1,
    "failed" : 0
  }
}

缓存的使用情况

可以使用如下API来获取使用情况。

Index stats API
基于索引的粒度统计缓存的使用情况。

命令样例,如下:

curl -X GET "https://localhost:9200/_stats/request_cache?human&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "_shards" : {
    "total" : 13,
    "successful" : 5,
    "failed" : 0
  },
  "_all" : {
    "primaries" : {
      "request_cache" : {
        "memory_size" : "0b",
        "memory_size_in_bytes" : 0,
        "evictions" : 0,
        "hit_count" : 0,
        "miss_count" : 0
      }
    },
    "total" : {
      "request_cache" : {
        "memory_size" : "0b",
        "memory_size_in_bytes" : 0,
        "evictions" : 0,
        "hit_count" : 0,
        "miss_count" : 0
      }
    }
  },
  "indices" : {
    "cloned-testindex_002" : {
      "uuid" : "Lrz1DOsWRY6OTt0Veawo-w",
      "health" : "yellow",
      "status" : "open",
      "primaries" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      },
      "total" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      }
    },
    "testindex_002" : {
      "uuid" : "k6twq9y9Qtmcs2AHK-USEQ",
      "health" : "yellow",
      "status" : "open",
      "primaries" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      },
      "total" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      }
    },
    "testindex_001" : {
      "uuid" : "7iGJRFfxRd2jD3qP-KDRmQ",
      "health" : "yellow",
      "status" : "open",
      "primaries" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      },
      "total" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      }
    }
  }
}

Nodes stats API
基于集群中节点的粒度统计缓存的使用情况。

命令样例,如下:

curl -X GET "https://localhost:9200/_nodes/stats/indices/request_cache?human&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果的样例,如下:

{
  "_nodes" : {
    "total" : 1,
    "successful" : 1,
    "failed" : 0
  },
  "cluster_name" : "elasticsearch",
  "nodes" : {
    "aKgBu7LgS9a6iPYH8n2JPw" : {
      "timestamp" : 1702049373653,
      "name" : "jackie-ubuntu",
      "transport_address" : "127.0.0.1:9300",
      "host" : "127.0.0.1",
      "ip" : "127.0.0.1:9300",
      "roles" : [
        "data",
        "data_cold",
        "data_content",
        "data_frozen",
        "data_hot",
        "data_warm",
        "ingest",
        "master",
        "ml",
        "remote_cluster_client",
        "transform"
      ],
      "attributes" : {
        "transform.config_version" : "10.0.0",
        "ml.machine_memory" : "4040318976",
        "ml.allocated_processors" : "4",
        "ml.allocated_processors_double" : "4.0",
        "ml.max_jvm_size" : "2021654528",
        "ml.config_version" : "11.0.0",
        "xpack.installed" : "true"
      },
      "indices" : {
        "request_cache" : {
          "memory_size" : "0b",
          "memory_size_in_bytes" : 0,
          "evictions" : 0,
          "hit_count" : 0,
          "miss_count" : 0
        }
      }
    }
  }
}

相关资料

posted @ 2023-12-09 00:30  jackieathome  阅读(50)  评论(0编辑  收藏  举报